<b><i>Introduction:</i></b> Future digital health research hinges on methodologies to conduct remote clinical assessments and in-home monitoring. The Collaborative Aging Research Using Technology (CART) initiative was introduced to establish a digital technology research platform that could widely assess activity in the homes of diverse cohorts of older adults and detect meaningful change longitudinally. This paper reports on the built end-to-end design of the CART platform, its functionality, and the resulting research capabilities. <b><i>Methods:</i></b> CART platform development followed a principled design process aiming for scalability, use case flexibility, longevity, and data privacy protection while allowing sharability. The platform, comprising ambient technology, wearables, and other sensors, was deployed in participants’ homes to provide continuous, long-term (months to years), and ecologically valid data. Data gathered from CART homes were sent securely to a research server for analysis and future data sharing. <b><i>Results:</i></b> The CART system was created, iteratively tested, and deployed to 232 homes representing four diverse cohorts (African American, Latinx, low-income, and predominantly rural-residing veterans) of older adults (<i>n</i> = 301) across the USA. Multiple measurements of wellness such as cognition (e.g., mean daily computer use time = 160–169 min), physical mobility (e.g., mean daily transitions between rooms = 96–155), sleep (e.g., mean nightly sleep duration = 6.3–7.4 h), and level of social engagement (e.g., reports of overnight visitors = 15–45%) were collected across cohorts. <b><i>Conclusion:</i></b> The CART initiative resulted in a minimally obtrusive digital health-enabled system that met the design principles while allowing for data capture over extended periods and can be widely used by the research community. The ability to monitor and manage health digitally within the homes of older adults is an important alternative to in-person assessments in many research contexts. Further advances will come with wider, shared use of the CART system in additional settings, within different disease contexts, and by diverse research teams.
An end-to-end suite of technologies has been established for the unobtrusive and continuous monitoring of health and activity changes occurring in the daily life of older adults over extended periods of time. The technology is aggregated into a system that incorporates the principles of being minimally obtrusive, while generating secure, privacy protected, continuous objective data in real-world (home-based) settings for months to years. The system includes passive infrared presence sensors placed throughout the home, door contact sensors installed on exterior doors, connected physiological monitoring devices (such as scales), medication boxes, and wearable actigraphs. Driving sensors are also installed in participants' cars and computer (PC, tablet or smartphone) use is tracked. Data is annotated via frequent online self-report options that provide vital information with regard to the data that is difficult to infer via sensors such as internal states (e.g., pain, mood, loneliness), as well as data referent to activity pattern interpretation (e.g., visitors, rearranged furniture). Algorithms have been developed using the data obtained to identify functional domains key to health or disease activity monitoring, including mobility (e.g., room transitions, steps, gait speed), physiologic function (e.g., weight, body mass index, pulse), sleep behaviors (e.g., sleep time, trips to the bathroom at night), medication adherence (e.g., missed doses), social engagement (e.g., time spent out of home, time couples spend together), and cognitive function (e.g., time on computer, mouse movements, characteristics of online form completion, driving ability). Change detection of these functions provides a sensitive marker for the application in health surveillance of acute illnesses (e.g., viral epidemic) to the early detection of prodromal dementia syndromes. The system is particularly suitable for monitoring the efficacy of clinical interventions in natural history studies of geriatric syndromes and in clinical trials.
Introduction Agitation, experienced by patients with dementia, is difficult to manage and stressful for caregivers. Currently, agitation is primarily assessed by caregivers or clinicians based on self‐report or very brief periods of observation. This limits availability of comprehensive or sensitive enough reporting to detect early signs of agitation or identify its precipitants. The purpose of this article is to provide proof of concept for characterizing and predicting agitation using a system that continuously monitors patients’ activities and living environment within memory care facilities. Methods Continuous and unobtrusive monitoring of a participant is achieved using behavioral sensors, which include passive infrared motion sensors, door contact sensors, a wearable actigraphy device, and a bed pressure mat sensor installed in the living quarters of the participant. Environmental sensors are also used to continuously assess temperature, light, sound, and humidity. Episodes of agitation are reported by nursing staff. Data collected for 138 days were divided by 8‐hour nursing shifts. Features from agitated shifts were compared to those from non‐agitated shifts using t ‐tests. Results A total of 37 episodes of agitation were reported for a male participant, aged 64 with Alzheimer's disease, living in a memory care unit. Participant activity metrics (eg, transitions within the living room, sleep scores from the bedmat, and total activity counts from the actigraph) significantly correlated with occurrences of agitation at night ( P < 0.05). Environmental variables (eg, humidity) also correlated with the occurrences of agitation at night ( P < 0.05). Higher activity levels were also observed in the evenings before agitated nights. Discussion A platform of sensors used for unobtrusive and continuous monitoring of participants with dementia and their living space seems feasible and shows promise for characterization of episodes of agitation and identification of behavioral and environmental precipitants of agitation.
The information processing capability of the brain decreases during unconscious states. Capturing this decrease during anesthesia-induced unconsciousness has been attempted using standard spectral analyses as these correlate relatively well with breakdowns in corticothalamic networks. Much of this work has involved the use of propofol to perturb brain activity, as it is one of the most widely used anesthetics for routine surgical anesthesia. Propofol administration alone produces EEG spectral characteristics similar to most hypnotics; however, inter-individual and drug variation render spectral measures inconsistent. Complexity measures of EEG signals could offer better measures to distinguish brain states, because brain activity exhibits nonlinear behavior at several scales during transitions of consciousness. We tested the potential of complexity analyses from nonlinear dynamics to identify loss and recovery of consciousness at clinically relevant timepoints. Patients undergoing propofol general anesthesia for various surgical procedures were identified as having changes in states of consciousness by the loss and recovery of response to verbal stimuli after induction and upon cessation of anesthesia, respectively. We demonstrate that nonlinear dynamics analyses showed more significant differences between consciousness states than spectral measures. Notably, attractors in conscious and anesthesia-induced unconscious states exhibited significantly different shapes. These shapes have implications for network connectivity, information processing, and the total number of states available to the brain at these different levels. They also reflect some of our general understanding of the network effects of consciousness in a way that spectral measures cannot. Thus, complexity measures could provide a universal means for reliably capturing depth of consciousness based on EEG changes at the beginning and end of anesthesia administration.
Wrist-worn actigraphy via research-grade devices, a well-established approach to the assessment of rest-activity, is limited by poor compliance, battery life, and lack of direct evidence for time spent physically in the bed. A non-invasive bed sensor (Emfit) may provide advantages over actigraphy for long-term sleep assessment in the home. This study compared sleep-wake measurements between this sensor and a validated actigraph. Patients and Methods: Thirty healthy subjects (6 to 54 years) underwent simultaneous monitoring with both devices for 14 days and filled out a daily sleep diary. Parameters included bed entry time, sleep start, sleep end, bed exit time, rest interval duration, and wake after sleep onset (WASO). The agreement between the two devices was measured using Bland-Altman plots and inter-class correlation coefficients (ICC). In addition, sensitivity, specificity, and accuracy were obtained from epoch-by-epoch comparisons of Emfit and actigraphy. Results: Fifteen percent of the subjects reported that wearing the actigraph was a burden. None reported that using the bed sensor was a burden. The minimal detectable change between Emfit and actigraphy was 11 minutes for bed entry time, 14 minutes for sleep start, 14 minutes for sleep end, 10 minutes for bed exit time, 20 minutes for rest interval duration, and 110 minutes for WASO. Inter-class correlation coefficients revealed an excellent agreement for all sleep parameters (ICC=0.99, 95% CI 98-99) except for WASO (ICC=0.46, 95% CI 0.33-0.56). Sensitivity, specificity, and accuracy were 0.62, 0.93, and 0.88, respectively. Kappa correlation analysis revealed a moderate correlation between the two devices (κ=0.55, p<0.0001). Conclusion:Emfit is an acceptable alternative to actigraphy for the estimation of bed entry time, sleep start, sleep end, bed exit time, and rest interval duration. However, WASO estimates are poorly correlated between the two devices. Emfit may offer methodological advantages in situations where actigraphy is challenging to implement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.