Background: Leakage of water and ions and soluble proteins from muscle cells occurs during prolonged exercise due to ischemia causing muscle damage. Also post mortem anoxia during conversion of muscle to meat is marked by loss of water and soluble components from the muscle cell. There is considerable variation in the water holding capacity of meat affecting economy of meat production. Water holding capacity depends on numerous genetic and environmental factors relevant to structural and biochemical muscle fibre properties a well as ante and post slaughter metabolic processes.
From our data, we conclude that the physiological basis of genetically fixed higher endurance-running performance in DUhTP marathon mouse is related to increased hepatic gluconeogenesis and lipogenesis. Expression of sirtuin 1 as well as of gluconeogenic and lipogenic key enzymes may be related to peroxisome proliferator-activated receptor delta. Metabolic adaptations presented in our study represent inborn features of superior endurance-running performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.