Background Animal models of addiction suggest that the transition from incentive-driven to habitual and ultimately compulsive drug use is mediated by a shift from ventral to dorsal striatal cue-control over drug seeking. Previous studies in human cannabis users reported elevated trait impulsivity and cue-reactivity in striatal circuits, however, these studies were not able to separate addiction-related from exposure-related adaptations.Methods To differentiate the adaptive changes, the present functional magnetic resonance imaging study examined behavioral and neural cue-reactivity in dependent (n = 18) and nondependent (n = 20) heavy cannabis users and a non-using reference group (n = 44). ResultsIrrespective of dependence status, cannabis users demonstrated elevated trait impulsivity as well as increased ventral striatal reactivity and striato-frontal coupling in response to drug cues. Dependent users selectively exhibited dorsal-striatal reactivity and decreased striato-limbic coupling during cue-exposure. An exploratory analysis revealed that higher ventral caudate cue-reactivity was associated with stronger cue-induced arousal and craving in dependent users, whereas this pattern was reversed in non-dependent users.Conclusions Together the present findings suggest that an incentive sensitization of the ventral striatal reward system may promote excessive drug use in humans, whereas adaptations in dorsal striatal systems engaged in habit formation may promote the transition to addictive use.
Effective regulation of negative affective states has been associated with mental health. Impaired regulation of negative affect represents a risk factor for dysfunctional coping mechanisms such as drug use and thus could contribute to the initiation and development of problematic substance use. This study investigated behavioral and neural indices of emotion regulation in regular marijuana users (n = 23) and demographically matched nonusing controls (n = 20) by means of an fMRI cognitive emotion regulation (reappraisal) paradigm. Relative to nonusing controls, marijuana users demonstrated increased neural activity in a bilateral frontal network comprising precentral, middle cingulate, and supplementary motor regions during reappraisal of negative affect (P < 0.05, FWE) and impaired emotion regulation success on the behavioral level (P < 0.05). Amygdala-focused analyses further revealed impaired amygdala downregulation in the context of decreased amygdala-dorsolateral prefrontal cortex functional connectivity (P < 0.05, FWE) during reappraisal in marijuana users relative to controls. Together, the present findings could reflect an unsuccessful attempt of compensatory recruitment of additional neural resources in the context of disrupted amygdala-prefrontal interaction during volitional emotion regulation in marijuana users. As such, impaired volitional regulation of negative affect might represent a consequence of, or risk factor for, regular marijuana use. Hum Brain Mapp 38:4270-4279, 2017. © 2017 Wiley Periodicals, Inc.
The transition from voluntary to addictive behavior is characterized by a loss of regulatory control in favor of reward driven behavior. Animal models indicate that this process is neurally underpinned by a shift in ventral–dorsal striatal control of behavior; however, this shift has not been directly examined in humans. The present resting state functional magnetic resonance imaging (fMRI) study employed a two‐step approach to: (a) precisely map striatal alterations using a novel, data‐driven network classification strategy combining intrinsic connectivity contrast with multivoxel pattern analysis and, (b) to determine whether a ventral to dorsal striatal shift in connectivity with reward and regulatory control regions can be observed in abstinent (28 days) male cannabis‐dependent individuals (n = 24) relative to matched controls (n = 28). Network classification revealed that the groups can be reliably discriminated by global connectivity profiles of two striatal regions that mapped onto the ventral (nucleus accumbens) and dorsal striatum (caudate). Subsequent functional connectivity analysis demonstrated a relative shift between ventral and dorsal striatal communication with fronto‐limbic regions that have been consistently involved in reward processing (rostral anterior cingulate cortex [ACC]) and executive/regulatory functions (dorsomedial prefrontal cortex [PFC]). Specifically, in the cannabis‐dependent subjects, connectivity between the ventral striatum with the rostral ACC increased, whereas both striatal regions were uncoupled from the regulatory dorsomedial PFC. Together, these findings suggest a shift in the balance between dorsal and ventral striatal control in cannabis dependence. Similar changes have been observed in animal models and may promote the loss of control central to addictive behavior.
Together, the present findings provide the first evidence for persisting emotion processing alterations in dependent marijuana users. Alterations might reflect long-term neural adaptations as a consequence of chronic marijuana use or predisposing risk factors for the development of marijuana dependence.
Public perception of cannabis as relatively harmless, alongside claimed medical benefits, have led to moves towards its legalization. Yet, long-term consequences of cannabis dependence, and whether they differ qualitatively from other drugs, are still poorly understood. A key feature of addictive drugs is that chronic use leads to adaptations in reward processing, blunting responsivity to the substance itself and other rewarding stimuli. Against this background, the present study investigated whether cannabis dependence is associated with reductions in hedonic representations by measuring behavioral and neural responses to social reward in 23 abstinent cannabis-dependent men and 24 matched non-using controls. In an interpersonal pleasant touch fMRI paradigm, participants were led to believe they were in physical closeness of or touched (CLOSE, TOUCH) by either a male or female experimenter (MALE, FEMALE), allowing the assessment of touch-and social context-dependent (i.e. female compared to male social interaction) reward dynamics.Upon female compared to male touch, dependent cannabis users displayed a significantly attenuated increase of reward experience compared to healthy controls. Controls responded to female as compared to male interaction with increased striatal activation whereas cannabis users displayed the opposite activation pattern, with stronger alterations being associated with a higher lifetime exposure to cannabis. Neural processing of pleasant touch in dependent cannabis users remained intact.These findings demonstrate that cannabis dependence in men is linked to similar lasting neuroadaptations in striatal responsivity to hedonic stimuli as observed for other drugs of abuse. However, reward processing deficits seem to depend on the social context. Clinical trial identifier: NCT02711371.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.