The extent to which the climate will change due to an external forcing depends largely on radiative feedbacks, which act to amplify or damp the surface temperature response. There are a variety of issues that complicate the analysis of radiative feedbacks in global climate models, resulting in some confusion regarding their strengths and distributions. In this paper, the authors present a method for quantifying climate feedbacks based on “radiative kernels” that describe the differential response of the top-of-atmosphere radiative fluxes to incremental changes in the feedback variables. The use of radiative kernels enables one to decompose the feedback into one factor that depends on the radiative transfer algorithm and the unperturbed climate state and a second factor that arises from the climate response of the feedback variables. Such decomposition facilitates an understanding of the spatial characteristics of the feedbacks and the causes of intermodel differences. This technique provides a simple and accurate way to compare feedbacks across different models using a consistent methodology. Cloud feedbacks cannot be evaluated directly from a cloud radiative kernel because of strong nonlinearities, but they can be estimated from the change in cloud forcing and the difference between the full-sky and clear-sky kernels. The authors construct maps to illustrate the regional structure of the feedbacks and compare results obtained using three different model kernels to demonstrate the robustness of the methodology. The results confirm that models typically generate globally averaged cloud feedbacks that are substantially positive or near neutral, unlike the change in cloud forcing itself, which is as often negative as positive.
Climate models differ in their responses to imposed forcings, such as increased greenhouse gas concentrations, due to different climate feedback strengths. Feedbacks in NCAR's Community Atmospheric Model (CAM) are separated into two components: the change in climate components in response to an imposed forcing and the "radiative kernel," the effect that climate changes have on the top-of-theatmosphere (TOA) radiative budget. This technique's usefulness depends on the linearity of the feedback processes. For the case of CO 2 doubling, the sum of the effects of water vapor, temperature, and surface albedo changes on the TOA clear-sky flux is similar to the clear-sky flux changes directly calculated by CAM. When monthly averages are used rather than values from every time step, the global-average TOA shortwave change is underestimated by a quarter, partially as a result of intramonth correlations of surface albedo with the radiative kernel. The TOA longwave flux changes do not depend on the averaging period. The longwave zonal averages are within 10% of the model-calculated values, while the global average differs by only 2%. Cloud radiative forcing (⌬CRF) is often used as a diagnostic of cloud feedback strength. The net effect of the water vapor, temperature, and surface albedo changes on ⌬CRF is Ϫ1.6 W m Ϫ2 , based on the kernel technique, while the total ⌬CRF from CAM is Ϫ1.3 W m Ϫ2 , indicating these components contribute significantly to ⌬CRF and make it more negative. Assuming linearity of the ⌬CRF contributions, these results indicate that the net cloud feedback in CAM is positive.
Abstract. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international collaborative effort to understand and quantify the uncertainties in atmospheric river (AR) science based on detection algorithm alone. Currently, there are many AR identification and tracking algorithms in the literature with a wide range of techniques and conclusions. ARTMIP strives to provide the community with information on different methodologies and provide guidance on the most appropriate algorithm for a given science question or region of interest. All ARTMIP participants will implement their detection algorithms on a specified common dataset for a defined period of time. The project is divided into two phases: Tier 1 will utilize the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis from January 1980 to June 2017 and will be used as a baseline for all subsequent comparisons. Participation in Tier 1 is required. Tier 2 will be optional and include sensitivity studies designed around specific science questions, such as reanalysis uncertainty and climate change. High-resolution reanalysis and/or model output will be used wherever possible. Proposed metrics include AR frequency, duration, intensity, and precipitation attributable to ARs. Here, we present the ARTMIP experimental design, timeline, project requirements, and a brief description of the variety of methodologies in the current literature. We also present results from our 1-month “proof-of-concept” trial run designed to illustrate the utility and feasibility of the ARTMIP project.
Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.