The atypical small G protein Rab-like 5 has been shown to traffic in sensory cilia of Caenorhabditis elegans, where it participates in signalling processes but not in cilia construction. In this report, we demonstrate that RABL5 colocalises with intraflagellar transport (IFT) proteins at the basal body and in the flagellum matrix of the protist Trypanosoma brucei. RABL5 fused to GFP exhibits anterograde movement in the flagellum of live trypanosomes, suggesting it could be associated with IFT. Accordingly, RABL5 accumulates in the short flagella of the retrograde IFT140RNAi mutant and is restricted to the basal body region in the IFT88RNAi anterograde mutant, a behaviour that is identical to other IFT proteins. Strikingly, RNAi silencing reveals an essential role for RABL5 in trypanosome flagellum construction. RNAi knock-down produces a phenotype similar to inactivation of retrograde IFT with formation of short flagella that are filled with a high amount of IFT proteins. These data reveal for the first time a functional difference for a conserved flagellar matrix protein between two different ciliated species and raise questions related to cilia diversity.
Aberrant elevation of JARID1B and histone H3 lysine 4 trimethylation (H3K4me3) is frequently observed in many diseases including prostate cancer (PCa), yet the mechanisms on the regulation of JARID1B and H3K4me3 through epigenetic alterations still remain poorly understood. Here we report that Skp2 modulates JARID1B and H3K4me3 levels in vitro in cultured cells and in vivo in mouse models. We demonstrated that Skp2 inactivation decreased H3K4me3 levels, along with a reduction of cell growth, cell migration and malignant transformation of Pten/Trp53 double null MEFs, and further restrained prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, Skp2 decreased the K63-linked ubiquitination of JARID1B by E3 ubiquitin ligase TRAF6, thus decreasing JARID1B demethylase activity and in turn increasing H3K4me3. In agreement, Skp2 deficiency resulted in an increase of JARID1B ubiquitination and in turn a reduction of H3K4me3, and induced senescence through JARID1B accumulation in nucleoli of PCa cells and prostate tumors of mice. Furthermore, we showed that the elevations of Skp2 and H3K4me3 contributed to castration-resistant prostate cancer (CRPC) in mice, and were positively correlated in human PCa specimens. Taken together, our findings reveal a novel network of SKP2- JARID1B, and targeting SKP2 and JARID1B may be a potential strategy for PCa control.
Background: Malaria microscopy, while the gold standard for malaria diagnosis, has limitations. Efficacy estimates in drug and vaccine malaria trials are very sensitive to small errors in microscopy endpoints. This fact led to the establishment of a Malaria Diagnostics Centre of Excellence in Kisumu, Kenya. The primary objective was to ensure valid clinical trial and diagnostic test evaluations. Key secondary objectives were technology transfer to host countries, establishment of partnerships, and training of clinical microscopists.
The present analyses were done to define the role of fetuin-A (Fet) in mammary tumorigenesis using the polyoma middle T antigen (PyMT) transgenic mouse model. We crossed Fet-null mice in the C57BL/6 background with PyMT mice in the same background and after a controlled breeding protocol obtained PyMT/Fet ؉/؉ , PyMT/Fet ؉/؊ , and PyMT/Fet ؊/؊ mice that were placed in control and experimental groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.