Acheron (Achn), a phylogenetically-conserved member of the Lupus antigen family of RNA binding proteins, was initially identified as a novel cell death-associated gene from the intersegmental muscles of the tobacco hawkmoth Manduca sexta. C(2)C(12) cells are a standard model for the study of myogenesis. When deprived of growth factors, these cells can be induced to: form multinucleated myotubes, arrest as quiescent satellite-like reserve cells, or undergo apoptosis. Achn expression is induced in myoblasts that form myotubes and acts upstream of the muscle specific transcription factor MyoD. Forced expression of ectopic Achn resulted in the formation of larger myotubes and massive reserve cell death relative to controls. Conversely, dominant-negative or antisense Achn blocked myotube formation following loss of growth factors, suggesting that Achn plays an essential, permissive role in myogenesis. Studies in zebrafish embryos support this hypothesis. Reduction of Achn with antisense morpholinos led to muscle fiber loss and an increase in the number of surviving cells in the somites, while ectopic Achn enhanced muscle fiber formation and reduced cell numbers. These results display a crucial evolutionarily conserved role for Achn in myogenesis and suggest that it plays key roles in the processes of differentiation and self-renewal.
Skeletal muscle mass can increase during hypertrophy or decline dramatically in response to normal or pathological signals that trigger atrophy. Many reports have documented that the number of nuclei within these cells is also plastic. It has been proposed that a yet-to-be-defined regulatory mechanism functions to maintain a relatively stable relationship between the cytoplasmic volume and nuclear number within the cell, a phenomenon known as the "myonuclear domain" hypothesis. While it is accepted that hypertrophy is typically associated with the addition of new nuclei to the muscle fiber from stem cells such as satellite cells, the loss of myonuclei during atrophy has been controversial. The intersegmental muscles from the tobacco hawkmoth Manduca sexta are composed of giant syncytial cells that undergo sequential developmental programs of atrophy and programmed cell death at the end of metamorphosis. Since the intersegmental muscles lack satellite cells or regenerative capacity, the tissue is not "contaminated" by these nonmuscle nuclei. Consequently, we monitored muscle mass, cross-sectional area, nuclear number, and cellular DNA content during atrophy and the early phases of cell death. Despite a ∼75-80% decline in muscle mass and cross-sectional area during the period under investigation, there were no reductions in nuclear number or DNA content, and the myonuclear domain was reduced by ∼85%. These data suggest that the myonuclear domain is not an intrinsic property of skeletal muscle and that nuclei persist through atrophy and programmed cell death.
Acheron (Achn) is a new member of the Lupus Antigen family of RNA binding proteins. Previous studies have shown that Achn controls developmental decisions in neurons and muscle. In the human mammary gland, Achn expression is restricted to ductal myoepithelial cells. Microarray analysis and immunohistochemistry have shown that Achn expression is elevated in some basal-like ductal carcinomas. To study the possible role of Achn in breast cancer, we engineered human MDA-MB-231 cells to stably express enhanced green fluorescent protein-tagged wild-type Achn (AchnWT), as well as Achn lacking either its nuclear localization signal (AchnNLS) or its nuclear export signal (AchnNES). In in vitro assays, AchnWT and AchnNES, but not AchnNLS, enhanced cell proliferation, lamellipodia formation, and invasive activity and drove expression of the elevated expression of the metastasis-associated proteins MMP-9 and VEGF. To determine if Achn could alter the behavior of human breast cancer cells in vivo, Achn-engineered MDA-MB-231 cells were injected into athymic SCID/Beige mice. AchnWT and AchnNES-expressing tumors displayed enhanced angiogenesis and an approximately five-fold increase in tumor size relative to either control cells or those expressing AchnNLS. These data suggest that Achn enhances human breast tumor growth and vascularization, and that this activity is dependent on nuclear localization.
Skeletal muscles can undergo atrophy and/or programmed cell death (PCD) during development or in response to a wide range of insults, including immobility, cachexia, and spinal cord injury. However, the protracted nature of atrophy and the presence of multiple cell types within the tissue complicates molecular analyses. One model that does not suffer from these limitations is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. Three days before the adult eclosion (emergence) at the end of metamorphosis, the ISMs initiate a non-pathological program of atrophy that results in a 40% loss of mass. The ISMs then generate the eclosion behaviour and initiate a non-apoptotic PCD during the next 30 hours. We have performed a comprehensive transcriptomics analysis of all mRNAs and microRNAs throughout ISM development in order to better understand the molecular mechanisms that mediate atrophy and death. Atrophy involves enhanced protein catabolism and reduced expression of the genes involved in respiration, adhesion and the contractile apparatus. In contrast, PCD involved the induction of numerous proteases, DNA methylases, membrane transporters, ribosomes, and anaerobic metabolism. These changes in gene expression are largely repressed when insects are injected with the insect steroid hormone 20-hydroxyecdysone, which delays death. The expression of the death-associated proteins may be greatly enhanced by reductions in specific microRNAs that function to repress translation. This study not only provides fundamental new insights into basic developmental processes, it may also represent a powerful resource for identifying potential diagnostic markers and molecular targets for therapeutic intervention.
One of the hallmarks of development is that many more cells are produced than are ultimately needed for organogenesis. In the case of striated skeletal muscle, large numbers of myoblasts are generated in the somites and then migrate to take up residence in the limbs and the trunk. A subset of these cells fuses to form multinucleated skeletal muscle fibers, while a second group, known as satellite cells, exits the cell cycle and persists as a pool of lineage-restricted stem cells that can repair damaged muscle. The remaining cells initiate apoptosis and are rapidly lost. Primary myoblasts and established satellite cell lines are powerful tools for dissecting the regulatory events that mediate differentiative decisions and have proven to be important models. As well, muscle diseases represent debilitating and often fatal disorders. This chapter provides a general background for muscle development and then details a variety of assays for monitoring the differentiation and the death of muscle. While some of these methods are specialized to address the phenotypic properties of skeletal muscle, others can be employed with a wide variety of cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.