Capillary electrophoresis (CE) appeared as an interesting alternative to chromatographic methods for carbohydrate analysis, but it can be difficult to implement, because of the lack of easily ionizable functions and chromophore groups. Recently, a promising method was proposed by Rovio et al. for the CE separation under extremely high alkaline conditions of neutral carbohydrates under their alcoholate form and their direct UV detection [Rovio et al. Electrophoresis 2007, 28, 3129-3135; and Rovio et al. J. Chromatogr. A 2008, 1185, 139-144], which is claimed to be due to the absorption of enediolate at 270 nm. Even so, most of the detected compounds in Rovio's paper (for example, sucrose) cannot give such enediolate, lacking a carbonyl group. In this work, a deeper insight was paid to the understanding of detection mechanism. In effect, unusual detection phenomena were observed in comparing reducing and nonreducing carbohydrate behaviors, which pointed to the existence of photochemical reactions in the detection window. A more systematic study of the influence of many parameters (carbohydrate nature, electrolyte pH, residence time in the detection window, and capillary diameter) was undertaken. In addition to this, most of this work was performed under cathodic (reversed) electro-osmotic flow conditions (using Polybrene-modified capillaries), to obtain much faster separations than under Rovio's conditions. This study also opens up new avenues for the detection in mid-UV range of non-UV-absorbing compounds bearing reducing moieties, such as amino acids.
A new CE method was developed for the identification and quantitation of inorganic cations in post-blast residues. The simultaneous analysis in 20 min total runtime of eight cations in post-blast residues (ammonium, potassium, monomethylammonium, calcium, sodium, magnesium, strontium), plus lithium cation as the internal reference, was carried out with a BGE involving a non-CMR (carcinogenic, mutagenic, and harmful to reproduction) chromophore (guanidinium cation) and a double-layer modified capillary (hexadimethrine bromide/polyvinylsulfonate). A study of UV detection conditions using guanidinium ion as the probe led us to set the analysis and reference wavelengths and their associated bandwidths as well as the probe concentration fixed at 15 mM. The successive multiple ionic-polymer layer approach limited the cation adsorption on capillary wall and improved the EOF stability. These caused a significant improvement in method repeatability. Intermediate precisions were 2.4% for corrected areas and 1.3% for normalized migration times. Limits of detection close to 1 mg/L for all cations were obtained. The matrix effects were studied with chemometric approach for different matrices representative of those collected after explosion. Tests with blank matrix extracts of soil, cloth, and with simulated matrix extract containing 800 mg/L Ca²⁺ and 500 mg/L Fe²⁺ were carried out and no significant matrix effects were observed. Finally, analyses of real residues collected after cash dispenser and homemade firework explosions demonstrate excellent correlation between the CE results and those obtained with the ion chromatography method used routinely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.