pI Cln is a protein that induces an outwardly rectifying, nucleotide-sensitive chloride current (I Cln ) when expressed in Xenopus oocytes, but its precise function (plasma-membrane anion channel versus cytosolic regulator of a channel) remains controversial. We now report that a chloride current identical to I Cln is induced when Xenopus oocytes are injected with human ClC-6 RNA. Indeed, both the pI Cln and the ClC-6 induced current are outwardly rectifying, they inactivate slowly at positive potentials and have an anion permeability sequence NO 3Cyclamate, NPPB, and extracellular cAMP block the induced currents. The success rate of current expression is significantly increased when the injected Xenopus oocytes are incubated at a higher temperature (24 or 37°C) prior to the analysis. In addition, the I Cln current was detected in 6.2% of noninjected control Xenopus oocytes. We therefore conclude that the I Cln current in Xenopus oocytes corresponds to an endogenous conductance that can be activated by expression of structurally unrelated proteins. Furthermore, functional, biochemical, and morphological observations did not support the notion that pI Cln resides in the plasma membrane either permanently or transiently after cell swelling. Thus, it is unlikely that pI Cln forms the channel that is responsible for the I Cln current in Xenopus oocytes.
The existence and properties of volume-activated Cl- currents were studied in 15 different cell types (endothelium: human umbilical vein, human aorta, bovine pulmonary artery; fibroblasts: Swiss 3T3, L, C3H 10T1/2 and COS-1; epithelium: KB3, HeLa and A6; blood cells: RBL-2H3 and Jurkat; endothelioma cells derived from both subcutaneous and thymic hemangiomas; skin: IGR1 melanoma). Volume-activated Cl- currents with common characteristics, i.e. small conductance, outward rectification, higher permeability for iodide than for chloride and sensitivity to block by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) could be elicited in all cells. The block of this current by tamoxifen and dideoxyforskolin is different for the various cell types, as well as the time course and the amplitude of the responses induced by repetitive applications of hypotonicity. Volume-activated Cl- channels with similar biophysical properties are therefore wide-spread among mammalian cells. This may reflect either a single Cl- channel that is ubiquitously expressed or a family of functionally related Cl- channels with cell specific expression patterns.
The role of the Na(+)-Ca2+ exchanger was examined in isolated rat dorsal root ganglion (DRG) neurons. Neurons were dialyzed with the Ca2+ indicator Indo-1. Ca2+ transients were elicited by depolarizing the cells from -80 to 0 mV for 100 ms under voltage clamp conditions. In most cells (45 of 67), the decay of intracellular Ca2+ concentration ([Ca2+]i) could be fitted with a single exponential with a time constant of 2.43 s. In the remaining 22 cells, the decay of [Ca2+]i could be described with a double exponential with time constants of 0.76 and 11.84 s. In cells that displayed a biphasic [Ca2+]i relaxation, Na(+)-free medium caused resting [Ca2+]i to increase from 116 to 186 nM; the slow component of recovery to basal [Ca2+]i was nearly abolished in Na(+)-free medium or by application of 5 mM Ni2+. In 35 of 45 cells displaying a monophasic [Ca2+]i decay, omitting external Na+ increased the time constant of [Ca2+]i decay from 2.02 to 3.63 s. In the remaining 10 cells, Na(+)-free solution did not affect Ca2+ handling. The time constant of [Ca2+]i relaxation was voltage dependent. These findings demonstrate the important role of the Na(+)-Ca2+ exchanger in DRG neurons. Its presence was further confirmed both at the mRNA and the protein level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.