Background-In obesity, decreases in adiponectin and increases in proinflammatory adipokines are associated with heart disease. Because adipocytes express mineralocorticoid receptor (MR) and MR blockade reduces cardiovascular inflammation and injury, we tested the hypothesis that MR blockade reduces inflammation and expression of proinflammatory cytokines in adipose tissue and increases adiponectin expression in adipose tissue and hearts of obese mice. Methods and Results-We determined the effect of MR blockade (eplerenone, 100 mg/kg per day for 16 weeks) on gene expression in retroperitoneal adipose and heart tissue from obese, diabetic db/db mice (nϭ8) compared with untreated obese, diabetic db/db mice (nϭ10) and lean, nondiabetic db/ϩ littermates (nϭ11). Expression of tumor necrosis factor-␣, monocyte chemoattractant protein-1, plasminogen activator inhibitor type 1, and macrophage protein CD68 increased, and expression of adiponectin and peroxisome proliferator-activated receptor-␥ decreased in retroperitoneal adipose tissue from obese versus lean mice. In addition, adiponectin expression in heart was reduced in obese versus lean mice. MR blockade prevented these obesity-related changes in gene expression. Furthermore, treatment of undifferentiated preadipocytes with aldosterone (10 Ϫ8 mol/L for 24 hours) increased mRNA levels of tumor necrosis factor-␣ and monocyte chemoattractant protein-1 and reduced mRNA and protein levels of peroxisome proliferatoractivated receptor-␥ and adiponectin, supporting a direct aldosterone effect on gene expression. Conclusions-MR blockade reduced expression of proinflammatory and prothrombotic factors in adipose tissue and increased expression of adiponectin in heart and adipose tissue of obese, diabetic mice. These effects on adiponectin and adipokine gene expression may represent a novel mechanism for the cardioprotective effects of MR blockade.
Cutaneous melanoma is a highly immunogenic malignancy, surgically curable at early stages, but life-threatening when metastatic. Here we integrate high-plex imaging, 3D high-resolution microscopy, and spatially-resolved micro-region transcriptomics to study immune evasion and immunoediting in primary melanoma. We find that recurrent cellular neighborhoods involving tumor, immune, and stromal cells change significantly along a progression axis involving precursor states, melanoma in situ, and invasive tumor. Hallmarks of immunosuppression are already detectable in precursor regions. When tumors become locally invasive, a consolidated and spatially restricted suppressive environment forms along the tumor-stromal boundary. This environment is established by cytokine gradients that promote expression of MHC-II and IDO1, and by PD1-PDL1 mediated cell contacts involving macrophages, dendritic cells, and T cells. A few millimeters away, cytotoxic T cells synapse with melanoma cells in fields of tumor regression. Thus, invasion and immunoediting can co-exist within a few millimeters of each other in a single specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.