Abstract. Extracts of metabolically labeled cultured epithelial cells have been analyzed by immunoprecipitation followed by SDS-PAGE, using antisera to the major high molecular mass proteins and glycoproteins (>100 kD) from desmosomes of bovine muzzle epidermis. For nonstratifying cells (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney), and A431 cells that have lost the ability to stratify through transformation, and a stratifying cell type (primary human keratinocytes) apparently similar polypeptides were immunoprecipitated with our antisera. These comprised three glycoproteins (DGI, DGII, and DGIII) and one major nonglycosylated protein (DPI). DPII, which has already been characterized by others in stratifying tissues, appeared to be absent or present in greatly reduced amounts in the nonstratifying cell types.The desmosome glycoproteins were further characterized in MDCK cells. Pulse-chase studies showed all three DGs were separate translation products. The two major glycoprotein families (DGI and DGII/III) were both found to be synthesized with co-translational addition of 2-4 high mannose cores later processed into complex type chains. However, they became endo-13-N-acetylglucosaminidase H resistant at different times (DGII/III being slower). None of the DGs were found to have O-linked oligosaccharides unlike bovine muzzle DGI. Transport to the cell surface was rapid for all glycoproteins (60-120 min) as demonstrated by the rate at which they became sensitive to trypsin in intact cells. This also indicated that they were exposed at the outer cell surface. DGII/III, but not DGI, underwent a proteolytic processing step, losing 10 kD of carbohydrate-free peptide, during transport to the cell surface suggesting a possible regulatory mechanism in desmosome assembly.
Abstract. Neither stratifying (primary keratinocytes)nor simple (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney [MDBK]) epithelial cell types form desmosomes in low calcium medium ~CM; <0.1 mM), but they can be induced to do so by raising the calcium level to physiological concentrations (standard calcium medium [SCM], 2 mM). We have used polyclonal antisera to the major bovine epidermal desmosome components (>100 kD) in a sensitive assay involving immunoprecipitation of the components from metabolically labeled MDCK cell monolayers to investigate the mechanism of calcium-induced desmosome formation.MDCK cells, whether cultured in LCM or SCM, were found to synthesize the desmosome protein, DPI and desmosome glycoproteins DGI and DGII/III with identical electrophoretic mobility, and also, where relevant, with similar carbohydrate addition/processing and proteolytic processing. The timings of these events and of transport of DGI to the cell surface were similar in low and high calcium. Although the rates of synthesis of the various desmosome components were also similar under both conditions, the glycoprotein turnover rates increased dramatically in cells cultured in LCM. The half-lives decreased by a factor of about 7 for DGI and 12 for DGII/IH and, consistent with this, MDCK cells labeled for 48 h in SCM had three and six times the amount of DGI and DGII/III, respectively, as cells labeled for 48 h in LCM. The rate of turnover and the levels of DPI were changed in the same direction, but to much lesser extents. Possible mechanisms for the Ca2 § control of desmosome formation are discussed in the light of this new evidence.
Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electro-osmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, alpha1-antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10(-9) m2V(-1)s(-1). They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and alpha1-antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.