Snow properties such as snow density will likely change in a warmer climate. Changes in depth and extent of snow cover have been shown to affect soil nutrient dynamics and plant growth; however, effects of a changed snow density have so far not been explicitly tested. We altered snow properties (especially depth and density according to those found on ski runs) and investigated effects on soil temperatures, soil nitrogen mineralization, plant phenology, and productivity. A denser, thinner snow cover led to reduced soil insulation and lower soil temperatures, which consequently increased net N mineralization. A denser snow cover furthermore resulted in a delay in plant phenology of up to five weeks after melt-out. The results suggest that changes in snow density, which have been largely neglected in the global change discussion until now, can cause significant changes in soil and vegetation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.