IntroductionThe organisation of the mammary epithelial hierarchy is poorly understood. Our hypothesis is that the luminal cell compartment is more complex than initially described, and that an understanding of the developmental relationships within this lineage will help in understanding the cellular context in which breast tumours occur.MethodsWe used fluorescence-activated cell sorting along with in vitro and in vivo functional assays to examine the growth and differentiation properties of distinct subsets of human and mouse mammary epithelial cells. We also examined how loss of steroid hormones influenced these populations in vivo. Gene expression profiles were also obtained for all the purified cell populations and correlated to those obtained from breast tumours.ResultsThe luminal cell compartment of the mouse mammary gland can be resolved into nonclonogenic oestrogen receptor-positive (ER+) luminal cells, ER+ luminal progenitors and oestrogen receptor-negative (ER-) luminal progenitors. The ER+ luminal progenitors are unique in regard to cell survival, as they are relatively insensitive to loss of oestrogen and progesterone when compared with the other types of mammary epithelial cells. Analysis of normal human breast tissue reveals a similar hierarchical organisation composed of nonclonogenic luminal cells, and relatively differentiated (EpCAM+CD49f+ALDH-) and undifferentiated (EpCAM+CD49f+ALDH+) luminal progenitors. In addition, approximately one-quarter of human breast samples examined contained an additional population that had a distinct luminal progenitor phenotype, characterised by low expression of ERBB3 and low proliferative potential. Parent-progeny relationship experiments demonstrated that all luminal progenitor populations in both species are highly plastic and, at low frequencies, can generate progeny representing all mammary cell types. The ER- luminal progenitors in the mouse and the ALDH+ luminal progenitors in the human appear to be analogous populations since they both have gene signatures that are associated with alveolar differentiation and resemble those obtained from basal-like breast tumours.ConclusionThe luminal cell compartment in the mammary epithelium is more heterogeneous than initially perceived since progenitors of varying levels of luminal cell differentiation and proliferative capacities can be identified. An understanding of these cells will be essential for understanding the origins and the cellular context of human breast tumours.
Mammary gland involution is characterized by extensive apoptosis of the epithelial cells. At the onset of involution, Stat3 is specifically activated. To address the function of this signaling molecule in mammary epithelial apoptosis, we have generated a conditional knockout of Stat3 using the Cre-lox recombination system. Following weaning, a decrease in apoptosis and a dramatic delay of involution occurred in Stat3 null mammary tissue. Involution is normally associated with a significant increase in IGFBP-5 levels. This was observed in control glands, but not in the absence of Stat3. IGFBP-5 has been suggested to induce apoptosis by sequestering IGF-1 to casein micelles, thereby inhibiting its survival function. Our findings suggest that IGFBP-5 is a direct or indirect target for Stat3 and its upregulation is essential to normal involution. No marked differences were seen in the regulation of Stat5, Bcl-x(L), or Bax in the absence of Stat3. Precocious activation of Stat1 and increases in levels of p53 and p21 occurred and may act as compensatory mechanisms for the eventual initiation of involution observed in Stat3 null mammary glands. This is the first demonstration of the importance of a Stat factor in signaling the initiation of physiological apoptosis in vivo.
Mammary gland development occurs through distinctive stages throughout embryonic and pubertal development and reproductive life. At each stage, different signals are required to induce changes in both the epithelium and the surrounding mesenchyme/stroma. Recent studies have provided new insights into the origin, specification and fate of mammary stem and progenitor cells and into how the differentiated lineages that comprise the functional mammary gland are determined. The development of new tools and culture techniques has also enabled the factors that influence branching morphogenesis in the embryonic and pubertal gland to be identified. A surprising recent discovery has been that mammary epithelial cells commit to differentiated lineages using the same signalling pathways that regulate lineage determination in T helper cells.
IntroductionBreast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.MethodsMore than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer ‘stem’ cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.ResultsThe 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.ConclusionsWith resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.