Myxobacteria are ubiquitous in soil environments. They display a complex life cycle: vegetatively growing cells coordinate their motility to form multicellular swarms, which upon starvation aggregate into large fruiting bodies where cells differentiate into spores. In addition to growing as saprophytes, Myxobacteria are predators that actively kill bacteria of other species to consume their biomass. In this review, we summarize research on the predation behavior of the model myxobacterium Myxococcus xanthus, which can access nutrients from a broad spectrum of microorganisms. M. xanthus displays an epibiotic predation strategy, i.e., it induces prey lysis from the outside and feeds on the released biomass. This predatory behavior encompasses various processes: Gliding motility and induced cell reversals allow M. xanthus to encounter prey and to remain within the area to sweep up its biomass, which causes the characteristic "rippling" of preying populations. Antibiotics and secreted bacteriolytic enzymes appear to be important predation factors, which are possibly targeted to prey cells with the aid of outer membrane vesicles. However, certain bacteria protect themselves from M. xanthus predation by forming mechanical barriers, such as biofilms and mucoid colonies, or by secreting antibiotics. Further understanding the molecular mechanisms that mediate myxobacterial predation will offer fascinating insight into the reciprocal relationships of bacteria in complex communities, and might spur application-oriented research on the development of novel antibacterial strategies.
SummaryCell division must only occur once daughter chromosomes have been fully separated. However, the initiating event of bacterial cell division, assembly of the FtsZ ring, occurs while chromosome segregation is still ongoing. We show that a two-step DNA translocase system exists in Bacillus subtilis that couples chromosome segregation and cell division. The membrane-bound DNA translocase SpoIIIE assembled very late at the division septum, and only upon entrapment of DNA, while its orthologue, SftA (YtpST), assembled at each septum in B. subtilis soon after FtsZ. Lack of SftA resulted in a moderate segregation defect at a late stage in the cell cycle. Like the loss of SpoIIIE, the absence of SftA was deleterious for the cells during conditions of defective chromosome segregation, or after induction of DNA damage. Lack of both proteins exacerbated all phenotypes. SftA forms soluble hexamers in solution, binds to DNA and has DNA-dependent ATPase activity, which is essential for its function in vivo. Our data suggest that SftA aids in moving DNA away from the closing septum, while SpoIIIE translocates septum-entrapped DNA only when septum closure precedes complete segregation of chromosomes.
Summary The life cycle of Myxococcus xanthus includes coordinated group movement and fruiting body formation, and requires directed motility and controlled cell reversals. Reversals are achieved by inverting cell polarity and re-organizing many motility proteins. The Frz chemosensory pathway regulates the frequency of cell reversals. While it has been established that phosphotransfer from the kinase FrzE to the response regulator FrzZ is required, it is unknown how phosphorylated FrzZ, the putative output of the pathway, targets the cell polarity axis. In this study, we used Phos-tag SDS-PAGE to determine the cellular level of phospho-FrzZ under different growth conditions and in Frz signaling mutants. We detected consistent FrzZ phosphorylation, albeit with a short half-life, in cells grown on plates, but not from liquid culture. The available pool of phospho-FrzZ correlated with reversal frequencies, with higher levels found in hyper-reversing mutants. Phosphorylation was not detected in hypo-reversing mutants. Fluorescence microscopy revealed that FrzZ is recruited to the leading cell pole upon phosphorylation and switches to the opposite pole during reversals. These results are consistent with the hypothesis that the Frz pathway modulates reversal frequency through a localized response regulator that targets cell polarity regulators at the leading cell pole.
Myxococcus xanthus kills other species to use their biomass as energy source. Its predation mechanisms allow feeding on a broad spectrum of bacteria, but the identity of predation effectors and their mode of action remains largely unknown. We initially focused on the role of hydrolytic enzymes for prey killing and compared the activity of secreted M. xanthus proteins against four prey strains. 72 secreted proteins were identified by mass spectrometry, and among them a family 19 glycoside hydrolase that displayed bacteriolytic activity in vivo and in vitro. This enzyme, which we name LlpM (lectin/lysozyme-like protein of M. xanthus), was not essential for predation, indicating that additional secreted components are required to disintegrate prey. Furthermore, secreted proteins lysed only Gram-positive, but not Gram-negative species. We thus compared the killing of different preys by cell-associated mechanisms: Individual M. xanthus cells killed all four test strains in a cell-contact dependent manner, but were only able to disintegrate Gram-negative, not Gram-positive cell envelopes. Thus, our data indicate that M. xanthus uses different, multifactorial mechanisms for killing and degrading different preys. Besides secreted enzymes, cell-associated mechanisms that have not been characterized so far, appear to play a major role for prey killing. IMPORTANCE Predation is an important survival strategy of the widespread myxobacteria, but it remains poorly understood on the mechanistic level. Without a basic understanding of how prey cell killing and consumption is achieved, it also remains difficult to investigate the role of predation for the complex myxobacterial lifestyle, reciprocal predator-prey relationships or the impact of predation on complex bacterial soil communities. We study predation in the established model organism Myxococcus xanthus, aiming to dissect the molecular mechanisms of prey cell lysis. In this study, we addressed the role of secreted bacteriolytic proteins, as well as potential mechanistic differences in the predation of Gram-positive and Gram-negative bacteria. Our observation shows that secreted enzymes are sufficient for killing and degrading Gram-positive species, but that cell-associated mechanisms may play a major role for killing Gram-negative and Gram-positive prey on fast timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.