Rationale: Human skin contains photolabile nitric oxide derivates like nitrite and S-nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO. Objective: Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy volunteers because of cutaneous nonenzymatic NO formation. Methods and Results: As detected by chemoluminescence detection or by electron paramagnetic resonance spectroscopy in vitro with human skin specimens, UVA illumination (25 J/cm 2 ) significantly increased the intradermal levels of free NO. In addition, UVA enhanced dermal S-nitrosothiols 2.3-fold, and the subfraction of dermal S-nitrosoalbumin 2.9-fold. In vivo, in healthy volunteers creamed with a skin cream containing isotopically labeled 15 N-nitrite, whole body UVA irradiation (20 J/cm 2 ) induced significant levels of 15 N-labeled S-nitrosothiols in the blood plasma of light exposed subjects, as detected by cavity leak out spectroscopy. Furthermore, whole body UVA irradiation caused a rapid, significant decrease, lasting up to 60 minutes, in systolic and diastolic blood pressure of healthy volunteers by 11؎2% at 30 minutes after UVA exposure. The decrease in blood pressure strongly correlated (R
Matrix metalloproteinases (MMPs), a family of zinc-dependent proteinases, participate in remodeling and degradation of the extracellular matrix proteins. The activity of MMPs is thought to be predominately posttranslationally regulated via proteolytic activation of precursor zymogens or via their naturally occurring endogenous inhibitors. Here, using recombinant MMP-1, we investigated new redox-dependent mechanisms of proteinase activity regulation by low-molecular-weight thiols. We find that glutathione (GSH), cysteine, homocysteine, and N-acetylcysteine at physiological concentrations competitively reduce MMP-1 activity up to 75% with an efficiency of cysteine > or = GSH > homocysteine > N-acetylcysteine. In contrast, S-derivatized thiols completely lack this inhibitory activity. Interestingly, the competitive GSH-mediated inhibition of MMP-1-activity can be fully reversed abrogated by oxidizing radicals like (*)NO(2) or Trolox radicals, here generated by UVA irradiation of nitrite or Trolox, two relevant agents in human skin physiology. This redox-dependent reactivation of the inactive GSH-MMP-1-complex comprises GSH oxidation and is significantly inhibited in the presence of ascorbic acid, an effective (*)NO(2) and Trolox radical scavenger. We here offer a new concept of redox-sensitive control of MMP-1 activity based on the inhibitory effect of reduced thiols and reactivation by a mechanism comprising derivatization or oxidation of the MMP-1-bound inhibitory-acting thiol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.