Nano liquid chromatography (nanoLC), with columns having an inner diameter (ID) of ≤100 μm, can provide enhanced sensitivity and enable analysis of limited samples.
Prior to mass spectrometry, on-line sample preparation can be beneficial to reduce manual steps, increase speed, and enable analysis of limited sample amounts. For example, bottom-up proteomics sample preparation and analysis can be accelerated by digesting proteins to peptides in an on-line enzyme reactor. We here focus on low-backpressure 100 μm inner diameter (ID) × 160 mm, 180 μm ID × 110 mm or 250 μm ID × 140 mm vinyl azlactone-co-ethylene dimethacrylate [poly(VDM-co-EDMA)] monoliths as supports for immobilizing of additional molecules (i.e., proteases or drugs), as the monolith was expected to have few unspecific interactions. For on-line protein digestion, monolith supports immobilized with trypsin enzyme were found to be suited, featuring the expected characteristics of the material, i.e., low backpressure and low carry-over. Serving as a functionalized sample loop, the monolith units were very simple to connect on-line with liquid chromatography. However, for on-line target deconvolution, the monolithic support immobilized with a Wnt pathway inhibitor was associated with numerous secondary interactions when exploring the possibility of selectively trapping target proteins by drug-target interactions. Our initial observations suggest that (poly(VDM-co-EDMA)) monoliths are promising for e.g., on-line bottom-up proteomics, but not a “fit-for-all” material. We also discuss issues related to the repeatability of monolith-preparations.
For studying stem cell–derived islet organoids (SC‐islets) in an organ‐on‐chip (OoC) platform, we have developed a reversed‐phase liquid chromatography–tandem mass spectrometry (RPLC–MS/MS) method allowing for simultaneous determination of insulin, somatostatin‐14, and glucagon, with improved matrix robustness compared to earlier methodology. Combining phenyl/hexyl‐C18 separations using 2.1 mm inner diameter LC columns and triple quadrupole mass spectrometry, identification and quantification were secured with negligible variance in retention time and quantifier/qualifier ratios, negligible levels of carryover (<2%), and sufficient precision (±10% RSD) and accuracy (±15% relative error) with and without use of an internal standard. The obtained lower limits of quantification were 0.2 µg/L for human insulin, 0.1 µg/L for somatostatin‐14, and 0.05 µg/L for glucagon. The here‐developed RPLC–MS/MS method showed that the SC‐islets have an insulin response dependent on glucose concentration, and the SC‐islets produce and release somatostatin‐14 and glucagon. The RPLC–MS/MS method for these peptide hormones was compatible with an unfiltered offline sample collection from SC‐islets cultivated on a pumpless, recirculating OoC (rOoC) platform. The SC‐islets background secretion of insulin was not significantly different on the rOoC device compared to a standard cell culture well‐plate. Taken together, RPLC–MS/MS method is well suited for multi‐hormone measurements of SC‐islets on an OoC platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.