The temporal trends and influence of age and gender on levels of selected brominated flame retardants (BFRs) in human serum have been assessed by analyzing archived samples from Norway. Serum from 40 to 50 year old men collected at six time periods during 1977 to 1999 and from eight groups of differing age and gender sampled in 1998 were pooled into six and eight samples, respectively. The BFRs were isolated using solid-phase extraction (SPE) and the serum lipids decomposed bytreatmentwith concentrated sulfuric acid directly on the polystyrene-divinylbenzene SPE column, prior to elution of the BFRs. Following diazomethane derivatization, the samples were analyzed by gas chromatography-electron capture mass spectrometry. Eight BFRs were quantified in the serum samples: 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153), 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154), 2,4,6-tribromophenol (TriBP), and tetrabromobisphenol A (TBBP-A). The serum concentrations of all the BFRs, increased during the entire period with the exception of TriBP, and the sum of the six polybrominated diphenyl ethers increased from 0.44 ng/g lipids in 1977 to 3.3 ng/g lipids in 1999. The BFR concentrations in the serum from the different age groups were relatively similar, except for the age group 0-4 years, which had 1.6-3.5 times higher serum concentrations. Women older than 25 years had lower serum concentrations of BFRs compared to the corresponding group of men. No trend related to age or gender, nor time during the period 1977 to 1999 was observed for TriBP. The present study indicates an ongoing increase in human exposure to BFRs, and the current body burden appears to be independent of age, except for infants (0-4 years old), who seem to experience elevated exposure.
BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior.METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men.RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood.CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function.FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).
The neuropeptide oxytocin (OT) is associated with a plethora of social behaviors, and is a key topic at the intersection of psychology and biology. However, tools for measuring OT are still not fully developed. We describe a robust nano liquid chromatography-mass spectrometry (nanoLC-MS) platform for measuring the total amount of OT in human plasma/serum. OT binds strongly to plasma proteins, but a reduction/alkylation (R/A) procedure breaks this bond, enabling ample detection of total OT. The method (R/A + robust nanoLC-MS) was used to determine total OT plasma/serum levels to startlingly high concentrations (high pg/mL-ng/mL). Similar results were obtained when combining R/A and ELISA. Compared to measuring free OT, measuring total OT can have advantages in e.g. biomarker studies.
Brominated flame retardants (BFRs) are widely used in plastics, textile coatings, electrical appliances and printed circuit boards to prohibit the development of fires. In order to investigate how exposure to BFRs is related to specific occupations, samples were obtained from Norwegian individuals working at an electronics dismantling facility, in the production of printed circuit boards, or as laboratory personnel. Nine BFRs were quantified in the plasma samples: 2,4,4'-tribromodiphenyl ether (BDE-28), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE-100), 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153), 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE-154), 2,2',3,4,4',5',6-heptabromodiphenyl ether (BDE-183), 2,4,6-tribromophenol (TriBP) and tetrabromobisphenol A (TBBP-A). The BFRs were extracted from plasma using solid-phase extraction (SPE). The plasma lipids were decomposed by treatment with concentrated sulfuric acid directly on the SPE column, prior to the elution of the BFRs. Following diazomethane derivatization, the samples were analysed by gas chromatography-electron capture mass spectrometry. The subjects working at the electronics dismantling plant had significantly higher plasma levels of TBBP-A and BDE-153 compared to the other groups, and the heptabrominated congener BDE-183 was only detected in plasma from this group. TriBP was generally the most abundant BFR present, and the plasma concentrations were in the range 0.17-81 ng g-1 lipids. BDE-47 was the dominant BDE congener in all the individual samples and the levels were in the range 0.43-14.6 ng g-1 lipids. The total amounts of the seven BDEs were 8.8, 3.9 and 3.0 ng g-1 lipids for the group of electronics dismantlers, circuit board producers and laboratory personnel, respectively. Generally, large variations in the individual concentration levels were found within the groups, especially in the group of electronics dismantlers, where the relative standard deviations for BDE concentrations were in the range 23-164%. The levels of BFRs were not correlated to age or the level of 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153). The present work indicates that the population in Norway is exposed to several BFRs, probably with food as a major source. The elevated level of higher brominated BDEs and TBBP-A in the plasma from the workers at the dismantling plant suggests an additional occupational exposure for these individuals. Thus, human exposure to BFRs seems to originate from a combination of different sources; however, further studies investigating plasma samples from a larger number of individuals are necessary for a more complete assessment of human exposure pathways to these environmental contaminants.
In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.