Reduced hippocampal GABAergic inhibition is acknowledged to be associated with epilepsy. However, there are no studies that had quantitatively compared the loss of various interneuron populations in different models of epilepsy. We tested a hypothesis that the more severe the loss of hippocampal interneurons, the more severe was the epilepsy. Epileptogenesis was triggered in adult rats by status epilepticus (SE) (56 SE, 24 controls) or by traumatic brain injury (TBI) (45 TBI, 23 controls). The total number of hippocampal parvalbumin (PARV), cholecystokinin (CCK), calretinin (CR), somatostatin (SOM), or neuropeptide Y (NPY) positive neurons was estimated using unbiased stereology at 1 or 6 months post-insult. The rats with TBI had no spontaneous seizures but showed increased seizure susceptibility. Eleven of the 28 rats (39 %) in the SE group had spontaneous seizures. The most affected hippocampal area after TBI was the ipsilateral dentate gyrus, where 62 % of PARV-immunoreactive (ir) (p < 0.001 compared to controls), 77 % of CR-ir (p < 0.05), 46 % of SOM-ir (p < 0.001), and 59 % of NPY-ir (p < 0.001) cells remained at 1 month after TBI. At 6 months post-TBI, only 35 % of PARV-ir (p < 0.001 compared to controls), 63 % of CCK-ir (p < 0.01), 74 % of CR-ir (p < 0.001), 55 % of SOM-ir (p < 0.001), and 51 % of NPY-ir (p < 0.001) cells were remaining. Moreover, the reduction in PARV-ir, CCK-ir, and CR-ir neurons was bilateral (all p < 0.05). Substantial reductions in different neuronal populations were also found in subfields of the CA3 and CA1. In rats with epilepsy after SE, the number of PARV-ir neurons was reduced in the ipsilateral CA1 (80 % remaining, p < 0.05) and the number of NPY-ir neurons bilaterally in the dentate gyrus (33-37 %, p < 0.01) and the CA3 (54-57 %, p < 0.05). Taken together, interneuron loss was substantially more severe, widespread, progressive, and included more interneuron subclasses after TBI than after SE. Interneurons responsible for perisomatic inhibition were more vulnerable to TBI than those providing dendritic inhibition. Unlike expected, we could not demonstrate any etiology-independent link between the severity of hippocampal interneuron loss and the overall risk of spontaneous seizures.
Stroke-induced immunodepression (SIDS) is an essential cause of poststroke infections. Pharmacological inhibition of SIDS appearspromising in preventing life-threatening infections in stroke patients. However, SIDS might represent an adaptive mechanism preventing autoreactive immune responses after stroke. To address this, we used myelin oligodendrocyte glycoprotein (MOG) T-cell receptor transgenic (2D2) mice where Ͼ80% of peripheral CD4 ϩ T cells express a functional receptor for MOG. We investigated in a murine model of middle cerebral artery occlusion the effect of blocking SIDS by inhibiting body's main stress axes, the sympathetic nervous system (SNS) with propranolol and the hypothalamic-pituitary-adrenal axis (HPA) with mifepristone. Blockade of both stress axes robustly reduced infarct volumes, decreased infection rate, and increased long-term survival of 2D2 and C57BL/6J wild-type mice. Despite these protective effects, blockade of SIDS increased CNS antigen-specific Type1 T helper cell (Th1) responses in the brains of 2D2 mice 14 d after middle cerebral artery occlusion. One month after experimental stroke, 2D2 mice developed signs of polyradiculitis, which were diminished by SIDS blockade. Adoptive transfer of CD4 ϩ T cells, isolated from 2D2 mice, into lymphocyte-deficient Rag-1KO mice did not reveal differences between SIDS blockade and vehicle treatment in functional long-term outcome after stroke. In conclusion, inhibiting SIDS by pharmacological blockade of body's stress axes increases autoreactive CNS antigen-specific T-cell responses in the brain but does not worsen functional long-term outcome after experimental stroke, even in a mouse model where CNS antigen-specific autoreactive T-cell responses are boosted.
Respiratory viral infections are frequent causes of morbidity in transplant patients. We screened symptomatic adult transplant recipients for respiratory viruses in a cohort of patients attending a referral medical center in Brazil. The duration of viral shedding and the prevalence of viral codetections were also determined. During a 1-year period (2011-2012), swabs were obtained from 50 patients. An in-house polymerase chain reaction panel designed to detect 10 viruses was used. Viruses were identified in 19 (38%) patients, particularly parainfluenza III (32%) and the respiratory syncytial virus (20%); multiple viruses were identified in 26% of patients. Prolonged viral shedding was observed with 60% of individuals excreting viruses for >10 days. The clinical and epidemiologic relevance of prolonged viral shedding remains to be determined.
Stroke patients are prone to life-threatening bacterial pneumonia. Previous experimental stroke studies have demonstrated that preventive antibiotic treatment (PAT) improves outcome compared with placebo treatment, which however does not model the clinical setting properly. Here we investigate whether PAT is superior to the current clinical 'gold standard' for treating poststroke infections. Therefore, we modeled stroke care according to the current stroke guidelines recommending early antibiotic treatment after diagnosing infections. To reliably diagnose pneumonia in living mice, we established a general health score and a magnetic resonance imaging protocol for radiologic confirmation. Compared with standard treatment after diagnosis by these methods, PAT not only abolished pneumonia successfully but also improved general medical outcome. Both, preventive and standard antibiotic treatment using enrofloxacin improved survival in a similar way compared with placebo treatment. However, in contrast to standard treatment, only PAT improved functional outcome assessed by gait analysis. In conclusion, standard and preventive treatment approach reduced poststroke mortality, however at the cost of a worse neurologic outcome compared with preventive approach. These data support the concept of PAT for treating patients at risk for poststroke infections and warrant phase III trials to prove this concept in clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.