The OMEGA/Mars Express hyperspectral imager identified gypsum at several sites on Mars in 2005. These minerals constitute a direct record of past aqueous activity and are important with regard to the search of extraterrestrial life. Gale Crater was chosen as Mars Science Laboratory Curiosity's landing site because it is rich in gypsum, as are some desert soils of the Cuatro Ciénegas Basin (CCB) (Chihuahuan Desert, Mexico). The gypsum of the CCB, which is overlain by minimal carbonate deposits, was the product of magmatic activity that occurred under the Tethys Sea. To examine this Mars analogue, we retrieved gypsum-rich soil samples from two contrasting sites with different humidity in the CCB. To characterize the site, we obtained nutrient data and analyzed the genes related to the N cycle (nifH, nirS, and nirK) and the bacterial community composition by using 16S rRNA clone libraries. As expected, the soil content for almost all measured forms of carbon, nitrogen, and phosphorus were higher at the more humid site than at the drier site. What was unexpected is the presence of a rich and divergent community at both sites, with higher taxonomic diversity at the humid site and almost no taxonomic overlap. Our results suggest that the gypsum-rich soils of the CCB host a unique microbial ecosystem that includes novel microbial assemblies.
Sponges are commonly known as general nutrient providers for the marine ecosystem, recycling organic matter into various forms of bioavailable nutrients such as ammonium and nitrate. In this study we challenge this view. We show that nutrient removal through microbial denitrification is a common feature in six cold-water sponge species from boreal and Arctic sponge grounds. Denitrification rates were quantified by incubating sponge tissue sections with 15 NO − 3amended oxygen-saturated seawater, mimicking conditions in pumping sponges, and de-oxygenated seawater, mimicking non-pumping sponges. It was not possible to detect any rates of anaerobic ammonium oxidation (anammox) using incubations with 15 NH + 4 . Denitrification rates of the different sponge species ranged from below detection to 97 nmol N cm −3 sponge d −1 under oxic conditions, and from 24 to 279 nmol N cm −3 sponge d −1 under anoxic conditions.A positive relationship between the highest potential rates of denitrification (in the absence of oxygen) and the speciesspecific abundances of nirS and nirK genes encoding nitrite reductase, a key enzyme for denitrification, suggests that the denitrifying community in these sponge species is active and prepared for denitrification. The lack of a lag phase in the linear accumulation of the 15 N-labelled N 2 gas in any of our tissue incubations is another indicator for an active community of denitrifiers in the investigated sponge species.Low rates for coupled nitrification-denitrification indicate that also under oxic conditions, the nitrate used to fuel denitrification rates was derived rather from the ambient seawater than from sponge nitrification. The lack of nifH genes encoding nitrogenase, the key enzyme for nitrogen fixation, shows that the nitrogen cycle is not closed in the sponge grounds. The denitrified nitrogen, no matter its origin, is then no longer available as a nutrient for the marine ecosystem.These results suggest a high potential denitrification capacity of deep-sea sponge grounds based on typical sponge biomass on boreal and Arctic sponge grounds, with areal denitrification rates of 0.6 mmol N m −2 d −1 assuming nonpumping sponges and still 0.3 mmol N m −2 d −1 assuming pumping sponges. This is well within the range of denitrification rates of continental shelf sediments. Anthropogenic impact and global change processes affecting the sponge redox state may thus lead to deep-sea sponge grounds changing their role in marine ecosystem from being mainly nutrient sources to becoming mainly nutrient sinks.
We discuss the potential interactions among travel (dispersal and gene flow), bacterial ''sex'' (mainly as horizontal gene transfer), and food (metabolic plasticity and responses to nutrient availability) in shaping microbial communities. With regard to our work at a unique desert oasis, the Cuatro Ciénegas Basin in Coahuila, Mexico, we propose that diversification and low phosphorus availability, in combination with mechanisms for nutrient recycling and community cohesion, result in enhanced speciation through reproductive as well as geographic isolation. We also discuss these mechanisms in the broader sense of ecology and evolution. Of special relevance to astrobiology and central to evolutionary biology, we ask why there are so many species on Earth and provide a working hypothesis and a conceptual framework within which to consider the question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.