published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
This randomized clinical trial evaluates the safety and efficacy of the monoclonal anti-tau antibody semorinemab in individuals with prodromal to mild Alzheimer disease.
ObjectiveAmyloid β (Aβ) depositions in plaques and cerebral amyloid angiopathy (CAA) represent common features of Alzheimer's disease (AD). Sequential deposition of post‐translationally modified Aβ in plaques characterizes distinct biochemical stages of Aβ maturation. However, the molecular composition of vascular Aβ deposits in CAA and its relation to plaques remain enigmatic.MethodsVascular and parenchymal deposits were immunohistochemically analyzed for pyroglutaminated and phosphorylated Aβ in the medial temporal and occipital lobe of 24 controls, 27 pathologically‐defined preclinical AD, and 20 symptomatic AD cases.ResultsSequential deposition of Aβ in CAA resembled Aβ maturation in plaques and enabled the distinction of three biochemical stages of CAA. B‐CAA stage 1 was characterized by deposition of Aβ in the absence of pyroglutaminated Aβ N3pE and phosphorylated Aβ pS8. B‐CAA stage 2 showed additional Aβ N3pE and B‐CAA stage 3 additional Aβ pS8. Based on the Aβ maturation staging in CAA and plaques, three case groups for Aβ pathology could be distinguished: group 1 with advanced Aβ maturation in CAA; group 2 with equal Aβ maturation in CAA and plaques; group 3 with advanced Aβ maturation in plaques. All symptomatic AD cases presented with end‐stage plaque maturation, whereas CAA could exhibit immature Aβ deposits. Notably, Aβ pathology group 1 was associated with arterial hypertension, and group 2 with the development of dementia.InterpretationBalance of Aβ maturation in CAA and plaques defines distinct pathological subgroups of β‐amyloidosis. The association of CAA‐related Aβ maturation with cognitive decline, the individual contribution of CAA and plaque pathology to the development of dementia within the defined Aβ pathology subgroups, and the subgroup‐related association with arterial hypertension should be considered for differential diagnosis and therapeutic intervention.
ObjectiveSynaptic loss plays a major role in Alzheimer’s disease (AD). However so far no neurochemical marker for synaptic loss has been introduced into clinical routine. By mass spectrometry beta-synuclein was established as a candidate marker. We now aimed to set up a novel ELISA for beta-synuclein for evaluation of its potential as a diagnostic and predictive marker for AD.MethodsWe analysed in total 393 patients from four specialised centres. The diagnostic groups comprised: AD (n=151), behavioural variant frontotemporal dementia (bvFTD, n=18), Parkinson syndrome (n=46), Creutzfeldt-Jakob disease (CJD, n=23), amyotrophic lateral sclerosis (ALS, n=29), disease control (n=66) and 60 non-neurodegenerative control patients. Results were compared with core AD biomarkers (total tau, phospho-tau and amyloid-β peptide 1–42). Additionally, coexistence of beta-synuclein with vesicular glutamate transporter 1 (VGLUT1) was determined and beta-synuclein levels were quantified in brain homogenates.ResultsBeta-synuclein levels quantified with the newly established ELISA correlated strongly with antibody-free quantitative mass spectrometry data (r=0.92 (95% CI: 0.89 to 0.94), p<0.0001). Cerebrospinal fluid (CSF) beta-synuclein levels were increased in AD-mild cognitive impairment (p<0.0001), AD dementia (p<0.0001) and CJD (p<0.0001), but not in bvFTD, Parkinson syndrome or ALS. Furthermore, beta-synuclein was localised in VGLUT1-positive glutamatergic synapses, and its expression was significantly reduced in brain tissue from patients with AD (p<0.01).ConclusionWe successfully established a sensitive and robust ELISA for the measurement of brain-enriched beta-synuclein, which we could show is localised in glutamatergic synapses. We confirmed previous, mass spectrometry-based observations of increased beta-synuclein levels in CSF of patients with AD and CJD supporting its potential use as a marker of synaptic degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.