SummaryBesides the acknowledged roles of red light, blue light is a key determinant for synchronizing the metabolic and physiological components of CAM over the day/night cycle.
Throughout the different seasons Aechmea 'Maya' showed considerable plasticity in the timing and magnitude of C(3) and C(4) carboxylation processes over the diel cycle. Under low PPFD (i.e. winter and autumn) it appears that there was a constraint on the amount of carbohydrate exported during the day in order to maintain a consistent pool of transient carbohydrate reserves. This gave remarkable seasonal consistency in the amount of storage reserves available at night, thereby optimizing biomass gain throughout the year. The data have important practical consequences for horticultural productivity of CAM plants and suggest a scenario for reconciling carbohydrate partitioning between competing sinks of nocturnal acidification and export for growth.
Despite the increased size of the soluble sugar storage pool under elevated CO(2), there was no change in the net allocation of carbohydrates between provision of substrates for CAM and export/respiration in A. 'Maya'. The data imply the existence of discrete pools of carbohydrate that provide substrate for CAM or sugars for export/respiration. The 2-fold increase in water-use efficiency could be a major physiological advantage to growth under elevated CO(2) in this CAM bromeliad.
It was shown that some oral bacteria can cause antagonism toward periodontopathogens, and these observations underline the therapeutic potential of applications that stimulate oral health by the application of beneficial effector strains.
Despite the increased energetic costs of CAM compared with C(3) photosynthesis, it is hypothesized that the inherent photosynthetic plasticity of CAM allows successful acclimation to light-limiting conditions. The present work sought to determine if CAM presented any constraints to short and longer term acclimation to light limitation and to establish if and how metabolic and photosynthetic plasticity in the deployment of the four phases of CAM might facilitate acclimation to conditions of deep shade. Measurements of leaf gas exchange, organic acids, starch and soluble sugar (glucose, fructose, and sucrose) contents were made in the leaves of the constitutive CAM bromeliad Aechmea 'Maya' over a three month period under severe light limitation. A. 'Maya' was not particularly tolerant of severe light limitation in the short term. A complete absence of net CO(2) uptake and fluctuations in key metabolites (i.e. malate, starch or soluble sugars) indicated a dampened metabolism whilst cell death in the most photosynthetically active leaves was attributed to an over-acidification of the cytoplasm. However, in the longer term, plasticity in the use of the different phases of gas exchange and different storage carbohydrate pools, i.e. a switch from starch to sucrose as the major carbohydrate source, ensured a positive carbon balance for this CAM species under extremely low levels of irradiance. As such, co-ordinated plasticity in the use of C(3) and C(4) carboxylases and different carbohydrate pools together with an increase in the abundance of light-harvesting complexes, appear to underpin the adaptive radiation of the energetically costly CAM pathway within light-limiting environments such as wet cloud forests and shaded understoreys of tropical forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.