TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy–cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe–Salpeter methods, second-order Møller–Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE’s functionality, including excited-state methods, RPA and Green’s function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE’s current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE’s development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
A comprehensive overview of the performance of local hybrid functionals for molecular properties like excited states, ionization potentials within the GW framework, polarizabilities, magnetizabilities, NMR chemical shifts, and NMR spin–spin coupling constants is presented. We apply the generalization of the kinetic energy, τ, with the paramagnetic current density to all magnetic properties and the excitation energies from time-dependent density functional theory. This restores gauge invariance for these properties. Different ansätze for local mixing functions such as the iso-orbital indicator, the correlation length, the Görling–Levy second-order limit, and the spin polarization are compared. For the latter, we propose a modified version of the corresponding hyper-generalized gradient approximation functional of Perdew, Staroverov, Tao, and Scuseria (PSTS) [Phys. Rev. A 2008, 78, 052513] to allow for a numerically stable evaluation of the exchange-correlation kernel and hyperkernel. The PSTS functional leads to a very consistent improvement compared to the related TPSSh functional. It is further shown that the “best” choice of the local mixing function depends on the studied property and molecular class. While functionals based on the iso-orbital indicator lead to rather accurate excitation energies and ionization energies, the results are less impressive for NMR properties, for which a considerable dependence on the considered molecular test set and nuclei is observed. Johnson’s local hybrid functional based on the correlation length yields remarkable results for NMR shifts of compounds featuring heavy elements and also for the excitation energies of organic compounds.
The performance of the Bethe-Salpeter equation (BSE) approach for the first-principles computation of singlet and triplet excitation energies of small organic, closed-shell molecules has been assessed with respect to the quasiparticle energies used on input, obtained at various levels of GW theory. In the corresponding GW computations, quasiparticle energies have been computed for all orbital levels by means of using full spectral functions. The assessment reveals that, for valence excited states, quasiparticle energies obtained at the levels of eigenvalue-only self-consistent (ev GW) or quasiparticle self-consistent theory (qs GW) are required to obtain results of comparable accuracy as in time-dependent density-functional theory (TDDFT) using a hybrid functional such as PBE0. In contrast to TDDFT, however, the BSE approach performs well not only for valence excited states but also for excited states with Rydberg or charge-transfer character. To demonstrate the applicability of the BSE approach, computation times are reported for a set of aromatic hydrocarbons. Furthermore, examples of computations of ordinary photoabsorption and electronic circular dichroism spectra are presented for (C) and C, respectively.
The dissociation energy (D 0 ) of an isolated and cold molecular complex in the gas-phase is a fundamental measure of the strength of the intermolecular interactions between its constituent moieties. Accurate D 0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations and for the parametrization of force-field models used in fields ranging from crystallography to biochemistry. We re- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
We have implemented and applied the GW method and the static screened Bethe–Salpeter equation (BSE) for calculating linear-response properties for quasirelativistic molecular systems. Our ansatz is based on a two-component (2c) scheme that includes spin–orbit coupling as well as scalar relativistic effects. Efficient, state-of-the-art approaches including the analytic continuation (employing Padé approximants, scaling as N 4 with system size N ) and contour deformation schemes are presented to obtain the required 2c quasirelativistic GW quasiparticle energies. Screened exchange contributions are computed within the resolution-of-the-identity approximation, and working equations for the 2c GW/BSE method are given. The performance of the 2c GW/BSE method is assessed, and results are compared to other methods and experimental data. A robust iterative scheme for solving the eigenvalue problems occurring in the 2c GW/BSE and hybrid time-dependent density functional theories is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.