The dissociation energy (D 0 ) of an isolated and cold molecular complex in the gas-phase is a fundamental measure of the strength of the intermolecular interactions between its constituent moieties. Accurate D 0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations and for the parametrization of force-field models used in fields ranging from crystallography to biochemistry. We re- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Fluorobenzenes are pi-acceptor synthons that form pi-stacked structures in molecular crystals as well as in artificial DNAs. We investigate the competition between hydrogen bonding and pi-stacking in dimers consisting of the nucleobase mimic 2-pyridone (2PY) and all fluorobenzenes from 1-fluorobenzene to hexafluorobenzene (n-FB, with n = 1-6). We contrast the results of high level ab initio calculations with those obtained using ultraviolet (UV) and infrared (IR) laser spectroscopy of isolated and supersonically cooled dimers. The 2PY.n-FB complexes with n = 1-5 prefer double hydrogen bonding over pi-stacking, as diagnosed from the UV absorption and IR laser depletion spectra, which both show features characteristic of doubly H-bonded complexes. The 2-pyridone.hexafluorobenzene dimer is the only pi-stacked dimer, exhibiting a homogeneously broadened UV spectrum and no IR bands characteristic for H-bonded species. MP2 (second-order Møller-Plesset perturbation theory) calculations overestimate the pi-stacked dimer binding energies by about 10 kJ/mol and disagree with the experimental observations. In contrast, the MP2 treatment of the H-bonded dimers appears to be quite accurate. Grimme's spin-component-scaled MP2 approach (SCS-MP2) is an improvement over MP2 for the pi-stacked dimers, reducing the binding energy by approximately 10 kJ/mol. When applied to explicitly correlated MP2 theory (SCS-MP2-R12 approach), agreement with the corresponding coupled-cluster binding energies [at the CCSD(T) level] is very good for the pi-stacked dimers, within +/- 1 kJ/mol for the 2PY complexes with 1-fluorobenzene, 1,2-difluorobenzene, 1,2,4,5-tetrafluorobenzene, pentafluorobenzene and hexafluorobenzene. Unfortunately, the SCS-MP2 approach also reduces the binding energy of the H-bonded species, leading to disagreement with both coupled-cluster theory and experiment. The SCS-MP2-R12 binding energies follow the SCS-MP2 binding energies closely, being about 0.5 and 0.7 kJ/mol larger for the H-bonded and pi-stacked forms, respectively, in an augmented correlation-consistent polarized valence quadruple-zeta basis. It seems that the SCS-MP2 and SCS-MP2-R12 methods cannot provide sufficient accuracy to replace the CCSD(T) method for intermolecular interactions where H-bonding and pi-stacking are competitive.
Resonance-enhanced multiphoton ionization combined with electronic ground state depletion spectroscopy of jet-cooled allyl radicals (C(3)H(5)) provides vibronic spectra of the 3s and 3p Rydberg states. Analysis of the vibronic structure following two-photon excitation of rovibrationally cold allyl radicals reveals transitions to the 3p(z) ((2)A(1)) Rydberg state with an electronic origin at 42230 cm(-1). More than 40 transitions to vibrational levels in the partially overlapping spectra of the 3p(y) ((2)B(2)) Rydberg state and the 3s ((2)A(1)) Rydberg state are identified and reassigned on the basis of predictions from ab initio calculations and results and simulations of pulsed-field-ionization zero-kinetic-energy photoelectron spectra obtained recently using resonant multiphoton excitation via selected vibrational levels of these two Rydberg states (J. Chem. Phys. 2009, 131, 014304). Depletion spectroscopy reveals that the transition to the short-lived 3p(x) ((2)B(1)) Rydberg state in vicinity of three-state same symmetry conical intersections predicted theoretically carries most of the oscillator strength of these coupled 3s and 3p Rydberg states. The results allow for the first time to experimentally derive the energetic ordering of the 3p Rydberg states of the allyl radical.
The S(1)<-->S(0) vibronic spectra of supersonic jet-cooled 2-pyridone [pyridin-2-one (2PY)] and its N-H deuterated isotopomer (d-2PY) have been recorded by two-color resonant two-photon ionization, laser-induced fluorescence and emission, and fluorescence depletion spectroscopies. By combining these methods, the B origin of 2PY at 0(0) (0)+98 cm(-1) and the bands at +218 and +252 cm(-1) are identified as overtones of the S(1) state out-of-plane vibrations nu(1) (') and nu(2) ('), as are the analogous bands of d-2PY. Anharmonic double-minimum potentials are derived for the respective out-of-plane coordinates that predict further nu(1) (') and nu(2) (') overtones and combinations, reproducing approximately 80% of the vibronic bands up to 600 cm(-1) above the 0(0) (0) band. The fluorescence spectra excited at the electronic origins and the nu(1) (') and nu(2) (') out-of-plane overtone levels confirm these assignments. The S(1) nonplanar minima and S(1)<--S(0) out-of-plane progressions are in agreement with the determination of nonplanar vibrationally averaged geometries for the 0(0) (0) and 0(0) (0)+98 cm(-1) upper states by Held et al. [J. Chem. Phys. 95, 8732 (1991)]. The fluorescence lifetimes of the S(1) state vibrations show strong mode dependence: Those of the out-of-plane levels decrease rapidly above 200 cm(-1) excess vibrational energy, while the in-plane vibrations nu(5) ('), nu(8) ('), and nu(9) (') have longer lifetimes, although they are above or interspersed with the "dark" out-of-plane states. This is interpreted in terms of an S(1) (') state reaction with a low barrier towards a conical intersection with a prefulvenic geometry. Out-of-plane vibrational states can directly surmount this barrier, whereas in-plane vibrations are much less efficient in this respect. Analysis of the fluorescence spectra allows to identify nine in-plane S(0) (') state fundamentals, overtones of the S(0) state nu(1) (") and nu(2) (") out-of-plane vibrations, and >30 other overtones and combination bands. The B3LYP6-311++G(d,p) calculated anharmonic wave numbers are in very good agreement with the observed fundamentals, overtones, and combinations, with a deviation Delta(rms)=1.3%.
The 2-aminopyridine2-pyridone (2AP2PY) dimer is linked by N-H...O=C and N-H...N hydrogen bonds, providing a model for the Watson-Crick hydrogen bond configuration of the adenine.thymine and adenine.uracil nucleobase pairs. Mass-specific infrared spectra of 2AP2PY and its seven N-H deuterated isotopomers have been measured between 2550 and 3650 cm(-1) by IR laser depletion combined with UV two-color resonant two-photon ionization. The 2PY amide N-H stretch is a very intense band spread over the range 2700-3000 cm(-1) due to large anharmonic couplings. It is shifted to lower frequency by 710 cm(-1) or approximately 20% upon H bonding to 2AP. On the 2AP moiety, the "bound" amino N-H stretch gives rise to a sharp band at 3140 cm(-1), which is downshifted by 354 cm(-1) or approximately 10% upon H bonding to 2PY. The amino group "free" N-H stretch and the H-N-H bend overtone are sharp bands at approximately 3530 cm(-1) and 3320 cm(-1). Ab initio structures and harmonic vibrations were calculated at the Hartree-Fock level and with the PW91 and B3LYP density functionals. The PW91/6-311++G(d,p) method provides excellent predictions for the frequencies and IR intensities of all the isotopomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.