Finding metastable sets as dominant structures of Markov processes has been shown to be especially useful in modeling interesting slow dynamics of various real world complex processes. Furthermore, coarse graining of such processes based on their dominant structures leads to better understanding and dimension reduction of observed systems. However, in many cases, e.g. for nonreversible Markov processes, dominant structures are often not formed by metastable sets but by important cycles or mixture of both. This paper aims at understanding and identifying these different types of dominant structures for reversible as well as nonreversible ergodic Markov processes. Our algorithmic approach generalizes spectral based methods for reversible process by using Schur decomposition techniques which can tackle also nonreversible cases. We illustrate the mathematical construction of our new approach by numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.