Tunneling current in an armchair graphene nanoribbon (AGNR) tunnel field-effect transistor (TFET) was modeled. A linear equation was employed in describing a potential distribution within the AGNR due to its simplicity. A parabolic dispersion and an electron effective mass obtained by approximating kx 0 to the parabolic dispersion were applied to AGNR. In order to obtain electron transmittance, electron wavefunctions in AGNR were based on Airy functions. The obtained transmittance was then applied to calculate the tunneling current by employing the Landauer formula. The calculated results showed that the tunneling current increases with the AGNR width. It was also shown that the tunneling current increases as temperature decreases. In addition, the gate voltage influences the saturation condition of tunneling current in AGNR TFETs.
In this paper, we present a model of gate tunneling current in cylindrical surrounding-gate MOSFETs through dual layer high-k dielectric/SiO2 stacks. The model was derived under a quantum perturbation theory by taking into account both structural and electrical confinement effects. The influences of high-k materials and SiO2 thickness on the gate tunneling current have been studied. The calculated results show that the HfO2 is the most effective high-k material to decrease the gate tunneling current. It is also shown that the gate tunneling current is reduced with the SiO2 thickness. In addition, the obtained tunneling currents are fitted well with those obtained under the self-consistent calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.