SummaryThe probiotic Escherichia coli strain Nissle 1917 (EcN) has been used for decades in human medicine in Central Europe for the treatment and prevention of intestinal disorders and diseases. However, the molecular mechanisms underlying its beneficial effects are only partially understood. To identify molecular responses induced by EcN that might contribute to its probiotic properties polarized T84 cells were investigated employing DNA microarrays, quantitative RT-PCR, Western blotting, immunofluorescence and specific protein kinase C (PKC) inhibitors. Polarized T84 epithelial cell monolayers were used as a model to monitor barrier disruption by infection with the enteropathogenic E. coli (EPEC) strain E2348/69. Co-incubation of EPEC with EcN or addition of EcN following EPEC infection abolished barrier disruption and, moreover, restored barrier integrity as monitored by transepithelial resistance. DNA-microarray analysis of T84 cells incubated with EcN identified 300+ genes exhibiting altered expression. EcN altered the expression, distribution of zonula occludens-2 (ZO-2) protein and of distinct PKC isotypes. ZO-2 expression was enhanced in parallel to its redistribution towards the cell boundaries. This study provides evidence that EcN induces an overriding signalling effect leading to restoration of a disrupted epithelial barrier. This is transmitted via silencing of PKCz and the redistribution of ZO-2. We suggest that these properties contribute to the reported efficacy in the treatment of inflammatory bowel diseases and in part rationalize the probiotic nature of EcN.
Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the ‘apical junctional complex—AJC’ with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the ‘Junctional Adhesion Molecules’ (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers.
The intestinal ecosystem is balanced by dynamic interactions between resident and incoming microbes, the gastrointestinal barrier, and the mucosal immune system. However, in the context of inflammatory bowel diseases (IBD), where the integrity of the gastrointestinal barrier is compromised, resident microbes contribute to the development and perpetuation of inflammation and disease. Probiotic bacteria have been shown to exert beneficial effects, e.g., enhancing epithelial barrier integrity. However, the mechanisms underlying these beneficial effects are only poorly understood. Here, we comparatively investigated the effects of four probiotic lactobacilli, namely, Lactobacillus acidophilus, L. fermentum, L. gasseri, and L. rhamnosus, in a T84 cell epithelial barrier model. Results of DNA microarray experiments indicating that lactobacilli modulate the regulation of genes encoding in particular adherence junction proteins such as E-cadherin and -catenin were confirmed by quantitative reverse transcription-PCR (qRT-PCR). Furthermore, we show that epithelial barrier function is modulated by Gram-positive probiotic lactobacilli via their effect on adherence junction protein expression and complex formation. In addition, incubation with lactobacilli differentially influences the phosphorylation of adherence junction proteins and the abundance of protein kinase C (PKC) isoforms such as PKC␦ that thereby positively modulates epithelial barrier function. Further insight into the underlying molecular mechanisms triggered by these probiotics might also foster the development of novel strategies for the treatment of gastrointestinal diseases (e.g., IBD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.