Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation, and translation. We developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing. Application to a human embryonic kidney cell line identified close to 800 proteins. To our knowledge, nearly one-third were not previously annotated as RNA binding, and about 15% were not predictable by computational methods to interact with RNA. Protein occupancy profiling provides a transcriptome-wide catalog of potential cis-regulatory regions on mammalian mRNAs and showed that large stretches in 3' UTRs can be contacted by the mRNA-bound proteome, with numerous putative binding sites in regions harboring disease-associated nucleotide polymorphisms. Our observations indicate the presence of a large number of mRNA binders with diverse molecular functions participating in combinatorial posttranscriptional gene-expression networks.
Circular RNAs (circRNAs) are a large class of animal RNAs. To investigate possible circRNA functions, it is important to understand circRNA biogenesis. Besides human ALU repeats, sequence features that promote exon circularization are largely unknown. We experimentally identified circRNAs in C. elegans. Reverse complementary sequences between introns bracketing circRNAs were significantly enriched in comparison to linear controls. By scoring the presence of reverse complementary sequences in human introns, we predicted and experimentally validated circRNAs. We show that introns bracketing circRNAs are highly enriched in RNA editing or hyperediting events. Knockdown of the double-strand RNA-editing enzyme ADAR1 significantly and specifically upregulated circRNA expression. Together, our data support a model of animal circRNA biogenesis in which competing RNA-RNA interactions of introns form larger structures that promote circularization of embedded exons, whereas ADAR1 antagonizes circRNA expression by melting stems within these interactions.
Quantitative and systems biology approaches benefit from the unprecedented depth of next-generation sequencing. A typical experiment yields millions of short reads, which oftentimes carry particular sequence tags. These tags may be: (a) specific to the sequencing platform and library construction method (e.g., adapter sequences); (b) have been introduced by experimental design (e.g., sample barcodes); or (c) constitute some biological signal (e.g., splice leader sequences in nematodes). Our software FLEXBAR enables accurate recognition, sorting and trimming of sequence tags with maximal flexibility, based on exact overlap sequence alignment. The software supports data formats from all current sequencing platforms, including color-space reads. FLEXBAR maintains read pairings and processes separate barcode reads on demand. Our software facilitates the fine-grained adjustment of sequence tag detection parameters and search regions. FLEXBAR is a multi-threaded software and combines speed with precision. Even complex read processing scenarios might be executed with a single command line call. We demonstrate the utility of the software in terms of read mapping applications, library demultiplexing and splice leader detection. FLEXBAR and additional information is available for academic use from the website: .
Tissue mechanics drive morphogenesis, but how forces are sensed and transmitted to control stem cell fate and self-organization remains unclear. We show that a mechanosensory complex of emerin (Emd), non-muscle myosin IIA (NMIIA) and actin controls gene silencing and chromatin compaction, thereby regulating lineage commitment. Force-driven enrichment of Emd at the outer nuclear membrane of epidermal stem cells leads to defective heterochromatin anchoring to the nuclear lamina and a switch from H3K9me2,3 to H3K27me3 occupancy at constitutive heterochromatin. Emd enrichment is accompanied by the recruitment of NMIIA to promote local actin polymerization that reduces nuclear actin levels, resulting in attenuation of transcription and subsequent accumulation of H3K27me3 at facultative heterochromatin. Perturbing this mechanosensory pathway by deleting NMIIA in mouse epidermis leads to attenuated H3K27me3-mediated silencing and precocious lineage commitment, abrogating morphogenesis. Our results reveal how mechanics integrate nuclear architecture and chromatin organization to control lineage commitment and tissue morphogenesis.
Here we present a draft genome sequence of the nematode Pristionchus pacificus, a species that is associated with beetles and is used as a model system in evolutionary biology. With 169 Mb and 23,500 predicted protein-coding genes, the P. pacificus genome is larger than those of Caenorhabditis elegans and the human parasite Brugia malayi. Compared to C. elegans, the P. pacificus genome has more genes encoding cytochrome P450 enzymes, glucosyltransferases, sulfotransferases and ABC transporters, many of which were experimentally validated. The P. pacificus genome contains genes encoding cellulase and diapausin, and cellulase activity is found in P. pacificus secretions, indicating that cellulases can be found in nematodes beyond plant parasites. The relatively higher number of detoxification and degradation enzymes in P. pacificus is consistent with its necromenic lifestyle and might represent a preadaptation for parasitism. Thus, comparative genomics analysis of three ecologically distinct nematodes offers a unique opportunity to investigate the association between genome structure and lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.