Abstract-The objective of this paper is to provide an overview of emerging technologies for modular power converter architectures for electric vehicles. Nowadays, the most common electrical drive-train architecture exhibits one single inverter which is directly tied to the battery. As a consequence, only one high-voltage battery module can be applied and the dc-link voltage of the inverter and its apparent power rating is directly dependent on the available battery voltage. To overcome this restriction, modern power converter architectures with a higher degree of freedom have been proposed. These architectures exhibit modular dc-dc converters to allow different battery technologies to be linked to drive inverters operating independently from each other. To make this development feasible, new components and technologies are evolving which enhance the efficiency over mission cycles while ensuring further integration of the power-converter architectures.Wide-bandgap power semiconductors enable high switching frequencies and miniaturization of passive devices. Smart topology enhancements and control methods allow a significant loss reduction, in particular at light loads, resulting in a higher efficiency of the drive train over the entire driving cycle. Highly integrated bidirectional battery charger systems with intelligent charging strategies inhibit battery degradation and provide opportunities for grid stabilization. It is demonstrated how these technologies are realized and implemented to contribute to the development of future electric vehicles.
This work addresses discrete time modeling, implementation and design options for the current control of three phase grid tied PWM converters. Based on an accurate discrete time model of the PWM converter, closed loop current control is reviewed from the perspective of the synchronous and stationary reference frame. Then, implementation options for the synchronous frame proportional integral (SFPI) regulator and the proportional resonant (PR) regulator are discussed leading to the formulation of a general controller framework based on space vector resonators: the Resonant Space Vector (RSV) regulator. It can embody multiple SFPI regulators on different frequencies and allows a consistent design of state feedback controllers as well as an efficient implementation. For this control framework an insightful design procedure based on the root locus method for complex system models is introduced. Finally, the performance of the presented control design and implementation concepts is demonstrated experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.