The principal regulator of erythropoiesis is the glycoprotein erythropoietin, which interacts with a specific cell surface receptor (EpoR). A study aimed at analyzing EpoR gene regulation has shown that both pluripotent embryonal stem cells and early multipotent hematopoietic cells express EpoR transcripts. Commitment to nonerythroid lineages (e.g., macrophage or lymphocytic) results in the shutdown of EpoR gene expression, whereas commitment to the erythroid lineage is concurrent with or followed by dramatic increases in EpoR transcription. To determine whether gene activity could be correlated with chromatin alterations, DNase-hypersensitive sites (HSS) were mapped. Two major HSS located in the promoter region and within the first intron of the EpoR gene are present in all embryonal stem and hematopoietic cells tested, the intensities of which correlate well with EpoR expression levels. In addition, a third major HSS also located within the first intron of the EpoR gene is uniquely present in erythroid cells that express high levels of EpoR. Transfection assays show that sequences surrounding this major HSS impart erythroid cell-specific enhancer activity to a heterologous promoter and that this activity is at least in part mediated by GATA-1. These data, together with concordant expression levels of GATA-1 and EpoR in both early multipotent hematopoietic and committed erythroid cells, support a regulatory role of the erythroid cell-specific transcription factor GATA-1 in EpoR transcription in these cells. However, the lack of significant levels of GATA-1 expression in embryonal stem cells implies an alternative regulatory mechanism of EpoR transcription in cells not committed to the hematopoietic lineage.
The use of retroviral vectors for gene transfer into animals has been severely hampered by the lack of provirus transcription in the early embryo and embryonic stem (ES) cells. This primary block in provirus expression is maintained in differentiated cells by acis-acting mechanism that is not well characterized. Retroviral vectors based on the murine embryonal stem cell virus (MESV), which overcome the transcriptional block in ES cells, were constructed to investigate this secondary mechanism. These vectors transferred G418 resistance to ES cells with the same efficiency as to fibroblasts, but overall transcript levels were greatly reduced. A mosaic but stable expression pattern was observed when single cells from G418-resistant clones were replated in G418 or assayed for expression of LacZ or interleukin-3. The expression levels in independent clones were variable and correlated inversely with methylation. However, a second, more pronounced, block to transcription was found upon differentiation induction. Differentiation of the infected ES cells to cells permissive for retroviral expression resulted in repression and complete extinction of provirus expression. Extinction was not accompanied by increased levels of methylation. Provirus expression is thus regulated by two independentcis-acting mechanisms: (i) partial repression in the undifferentiated state, accompanied by increased methylation but compatible with long-term, low expression of retroviral genes, and (ii) total repression and extinction during early stages of differentiation, apparently independent of changes in methylation. These results indicate a time window early during the transition from an undifferentiated to a differentiated stage in which provirus expression is silenced. The mechanisms are presently unknown, but elucidation of these events will have an important impact on vector development for targeting stem cells and for gene therapy.
Multipotent hematopoietic progenitor cell lines (FDCP-Mix) infected with a retroviral vector expressing the GM-CSF gene show functional downregulation of the GM-CSF receptor when maintained in IL-3 and activation of the receptor resulting in synchronous differentiation into mature granulocytes and macrophages on withdrawal of IL-3. This system has now been used to investigate whether or not receptors for some of the other growth factors are also influenced as a consequence of differentiation. We show here the lineage specific receptors for M-CSF, G-CSF and erythropoietin are all upregulated, regardless of whether or not differentiation is induced by GM-CSF or by other conditions. Concomitant induction of the mRNA coding for the ligands M-CSF and G-CSF, but not for erythropoietin, suggests that M-CSF and possibly G-CSF facilitate macrophage or granulocyte differentiation by an autocrine stimulation of the lineage specific receptors. FDCP-Mix mutants that are blocked in their ability to differentiate on exposure to GM-CSF, but that still require GM-CSF for proliferation, do not express increased levels of M-CSF receptor nor M-CSF. Based on these data, we suggest that expression of these lineage specific receptors is part of the intrinsic endogenous program of myeloid differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.