This paper explores the utility of data mining and machine learning algorithms for the induction of mutagenicity structure-activity relationships (SARs) from noncongeneric data sets. We compare (i) a newly developed algorithm (MOLFEA) for the generation of descriptors (molecular fragments) for noncongeneric compounds with traditional SAR approaches (molecular properties) and (ii) different machine learning algorithms for the induction of SARs from these descriptors. In addition we investigate the optimal parameter settings for these programs and give an exemplary interpretation of the derived models. The predictive accuracies of models using MOLFEA derived descriptors is ∼10-15%age points higher than those using molecular properties alone. Using both types of descriptors together does not improve the derived models. From the applied machine learning techniques the rule learner PART and support vector machines gave the best results, although the differences between the learning algorithms are only marginal. We were able to achieve predictive accuracies up to 78% for 10-fold cross-validation. The resulting models are relatively easy to interpret and usable for predictive as well as for explanatory purposes.
OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.
This paper explores the utility of data mining and machine learning algorithms for the induction of mutagenicity structure-activity relationships (SARs) from noncongeneric data sets. We compare (i) a newly developed algorithm (MOLFEA) for the generation of descriptors (molecular fragments) for noncongeneric compounds with traditional SAR approaches (molecular properties) and (ii) different machine learning algorithms for the induction of SARs from these descriptors. In addition we investigate the optimal parameter settings for these programs and give an exemplary interpretation of the derived models. The predictive accuracies of models using MOLFEA derived descriptors is ∼10-15%age points higher than those using molecular properties alone. Using both types of descriptors together does not improve the derived models. From the applied machine learning techniques the rule learner PART and support vector machines gave the best results, although the differences between the learning algorithms are only marginal. We were able to achieve predictive accuracies up to 78% for 10-fold cross-validation. The resulting models are relatively easy to interpret and usable for predictive as well as for explanatory purposes.
PTC details and data can be found at: http://www.predictive-toxicology.org/ptc/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.