Why vestibular compensation (VC) after an acute unilateral vestibular loss is the neuro-otologist’s best friend is the question at the heart of this paper. The different plasticity mechanisms underlying VC are first reviewed, and the authors present thereafter the dual concept of vestibulo-centric versus distributed learning processes to explain the compensation of deficits resulting from the static versus dynamic vestibular imbalance. The main challenges for the plastic events occurring in the vestibular nuclei (VN) during a post-lesion critical period are neural protection, structural reorganization and rebalance of VN activity on both sides. Data from animal models show that modulation of the ipsilesional VN activity by the contralateral drive substitutes for the normal push–pull mechanism. On the other hand, sensory and behavioural substitutions are the main mechanisms implicated in the recovery of the dynamic functions. These newly elaborated sensorimotor reorganizations are vicarious idiosyncratic strategies implicating the VN and multisensory brain regions. Imaging studies in unilateral vestibular loss patients show the implication of a large neuronal network (VN, commissural pathways, vestibulo-cerebellum, thalamus, temporoparietal cortex, hippocampus, somatosensory and visual cortical areas). Changes in gray matter volume in these multisensory brain regions are structural changes supporting the sensory substitution mechanisms of VC. Finally, the authors summarize the two ways to improve VC in humans (neuropharmacology and vestibular rehabilitation therapy), and they conclude that VC would follow a “top-down” strategy in patients with acute vestibular lesions. Future challenges to understand VC are proposed.
Experimental and clinical data indicate that the cerebellum is involved in the pathophysiology of advanced stages of essential tremor (ET). The aim of this study was to determine whether a dysfunction also affects cerebellar structures involved in eye movement control. Eye movements of 14 patients with ET and 11 age-matched control subjects were recorded using the scleral search-coil technique. Vestibular function was assessed by electro-oculography. Eight ET patients had clinical evidence of intention tremor (ET(IT)); six had a predominantly postural tremor (ET(PT)) without intention tremor. ET patients showed two major deficits that may indicate cerebellar dysfunction: (i) an impaired smooth pursuit initiation; and (ii) pathological suppression of the vestibulo-ocular reflex (VOR) time constant by head tilts ('otolith dumping'). In the step ramp smooth pursuit paradigm, the initial eye acceleration in the first 60 ms of pursuit generation was significantly reduced in ET patients, particularly in ET(IT) patients, by approximately 44% (mean 23.4 degrees/s(2)) compared with that of control subjects (mean 41.3 degrees/s(2)). Subsequent steady-state pursuit velocity and sinusoidal pursuit gain (e.g. 0.4 Hz: 0.90 versus 0.78) were also significantly decreased in ET patients, whereas pursuit latency was unaffected. The intention tremor score correlated with the pursuit deficit, e.g. ET(IT) patients were significantly more affected than ET(PT) patients. Gain and time constant (tau) of horizontal VOR were normal, but suppression of the VOR time constant by head tilt ('otolith dumping') was pathological in 41% of ET patients, particularly in ET(IT) patients. Saccades and gaze-holding function were not impaired. The deficit of pursuit initiation, its correlation with the intensity of intention tremor, and the pathological VOR dumping provide additional evidence of a cerebellar dysfunction in the advanced stage of ET, when intention tremor becomes part of the clinical symptoms, and point to a common pathomechanism. The oculomotor deficits may indicate an impairment of the caudal vermis in ET.
The mesencephalic interstitial nucleus of Cajal (iC) is considered the neural integrator for vertical and torsional eye movements and has also been proposed to be involved in saccade generation. The aim of this study was to elucidate the function of iC in neural integration of different types of eye movements and to distinguish eye movement deficits due to iC impairment from that of the immediately adjacent rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). We addressed the following questions: (1) According to the neural integrator hypothesis, all eye movements including the saccadic system and the vestibulo-ocular reflex (VOR) share a common neural integrator. Do iC lesions impair gaze-holding function for vertical and torsional eye positions and the torsional and vertical VOR gain to a similar degree? (2) What are the dynamic properties of vertical and torsional eye movements deficits after iC lesions, e.g., the specificity of torsional and vertical nystagmus? (3) Is iC involved in saccade generation? We performed 13 uni- and three bilateral iC inactivations by muscimol microinjections in four alert monkeys. Three-dimensional eye movements were studied under head-stationary conditions during vertical and torsional VOR. Under static conditions, unilateral iC injections evoked a shift of Listing's plane to the contralesional side (up to 20 degrees), which increased (ipsilesional ear down) or decreased (ipsilesional ear up) by additional static vestibular stimulation in the roll plane, i.e., ocular counterroll was preserved. The monkeys showed a spontaneous torsional nystagmus with a profound downbeat component. The fast phases of torsional nystagmus always beat toward the lesion side (ipsilesional). Pronounced gaze-holding deficit for torsional and vertical eye positions (neural integrator failure) was reflected by the reduction of time constants of the exponential decay of the slow phase to 330-370 ms. Whereas the vertical oculomotor range was profoundly decreased (up to 50%) and vertical saccades were reduced in amplitude, saccade velocity remained normal and horizontal eye movements were not affected. Bilateral iC injections reduced the shift of Listing's plane caused by unilateral injections, i.e., back toward the plane of zero torsion. Torsional nystagmus reversed its direction and ceased, whereas vertical nystagmus persisted. In contrast to unilateral injection, there was additional upbeating nystagmus. Time constants of the position integrator of the gaze-holding system did not differ between unilateral and bilateral injections. The range of stable vertical eye positions and saccade amplitude was smaller when compared with unilateral injections, but the main sequence remained normal. Dynamic vestibular stimulation after unilateral iC injections had virtually no effect on torsional and vertical VOR gain and phase at the same time when time constants already indicated severe integrator failure. Torsional VOR elicited a constant slow-phase velocity offset up to 30 degrees toward the ...
Vestibular neuritis (VN) is a sudden unilateral vestibular failure (UVF) with a variable course. Caloric hyporesponsiveness often persists, and it is largely unknown why patients with the same degree of hyporesponsiveness show different functional recovery. As the peripheral vestibular deficit alone does not seem to determine functional recovery, it was the aim of this study to elucidate whether structural (morphological) brain changes (1) contribute to central vestibular compensation, and (2) account for the variability of clinical recovery in VN. Structural global gray-matter volume (GMV) changes in 15 VN patients were compared with age-matched controls. Morphometric changes in multisensory vestibular cortices, which may be related to functional disability scores, were hypothesized. Patients were examined with neuro-otological tests and clinical scores to assess vestibular disability. Using voxel-based morphometry (VBM, SPM2), categorical comparison revealed GMV increase in patients' multisensory vestibular cortices [insula, inferior parietal lobe (IPL), superior temporal gyrus (STG)], cerebellum, and motion-sensitive areas in the middle temporal area (MT). GMV decrease was found in the midline pontomedullary junction. Simple regression analysis revealed (1) GMV increase in insula and retroinsular vestibular cortex and STG with improving clinically assessed vestibular deficits, and (2) GMV increase in insula vestibular cortex and STG with improving self-assessed vestibular impairment. For the first time, these data suggest structural cortical plasticity in multisensory vestibular-cortex areas in VN that are related to clinical vestibular function and vertigo. As increase of GMV was related to an improvement of vestibular function, structural alterations may be related to central vestibular compensation.
We studied eye movements and brainstem pathology in 2 patients with slow vertical saccades and autopsy-proven amyotrophic lateral sclerosis (ALS). In both patients, the main ocular motor finding was supranuclear vertical gaze impairment with slow vertical saccades. The second patient had difficulty opening his eyes on command, with preserved spontaneous eyelid opening. Postmortem examination in both patients demonstrated cell loss in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) and substantia nigra, along with histopathological findings consistent with ALS. The extent of the pathological changes in the riMLF correlated well with the degree of functional impairment as reflected in the slow vertical saccades. We suggest that motor neuron disease with early involvement of vertical saccades represents a distinct clinicopathological entity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.