Abstract. In August 1998, severe forest fires occurred in many parts of Canada, especially in the Northwest Territories. In the week from August 5 to 11, more than 1000 different fires burned > 1 x 106 ha of boreal forest, the highest 1-week sum ever reported throughout the 1990s. In this study we can unambigously show for the
This study determined measured and Mie-calculated angular signal truncations for total and backscatter TSI, Inc., nephelometers, as a function of wavelength and for particles of known size and composition. Except for the total scattering channels, similar agreements as in a previous study of measured and calculated truncations were derived for submicrometer test aerosols. For the first time, instrument responses were also determined for supermicrometer test aerosols up to 1.9 m in geometric mean diameter. These supermicrometer data confirm the theoretical predictions of strong angular truncations of the total scatter signals in integrating nephelometers due to the limited range of measured forward scattering angles. Truncations up to 60% were determined for the largest measured particles. Rough empirical truncation corrections have been derived from the calibration data for Radiance Research and Ecotech nephelometers for which no detailed response characteristics exist. Intercomparisons of the nephelometers measuring urban atmospheric aerosols yield average deviations of the slope from a 1:1 relation with a TSI reference nephelometer of less than 7%. Average intercepts range between ϩ0.53 and Ϫ0.19 Mm Ϫ1 . For the Radiance Research and Ecotech nephelometers ambient regressions of the Radiance Research and Ecotech instruments with the TSI nephelometer show larger negative intercepts, which are attributed to their less well characterized optics.
[1] Measurements of the aerosol light scattering coefficient (s sp ) at a wavelength of l = 550 nm were conducted at a coastal atmospheric research station in the east Atlantic Ocean during June 1999. Size distribution measurements between diameters of 3 nm and 40 mm (at ambient humidity) were used to derive scattering coefficients from Mie theory. The calculated scattering coefficients were about a factor of 7.4 higher than the measured scattering coefficients. The discrepancy was explained by a reduced cutoff of the sampling system at particle diameters between 6 and 8 mm, dependent on wind speed. The calculated aerosol scattering was about 1 order of magnitude higher than previously reported measurements in the MBL and is attributed to supermicrometer particles at sizes d > 10 mm dominating aerosol scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.