The aerosol light absorption coefficient is an essential parameter involved in atmospheric radiation budget calculations. The Aethalometer (AE) has the great advantage of measuring the aerosol light absorption coefficient at several wavelengths, but the derived absorption coefficients are systematically too high when compared to reference methods. Up to now, four different correction algorithms of the AE absorption coefficients have been proposed by several authors. A new correction scheme based on these previously published methods has been developed, which accounts for the optical properties of the aerosol particles embedded in the filter. All the corrections have been tested on six datasets representing different aerosol types and loadings and include multi-wavelength AE and white-light AE. All the corrections have also been evaluated through comparison with a Multi-Angle Absorption Photometer (MAAP) for four datasets lasting between 6 months and five years. The modification of the wavelength dependence by the different corrections is analyzed in detail. The performances and the limits of all AE corrections are determined and recommendations are given
[1] Laboratory experiments have been carried out to elucidate the role of surfactants on the primary marine aerosol production of submicron marine aerosols. A synthetic surfactant SDS was used in conjunction with artificially generated seawater, and the resultant bubble-mediated aerosol produced was observed. At 23°C, the aerosol distribution resulting from the use of surfactant-free seawater comprised three modes: (1) a dominant accumulation mode at 110 nm; (2) an Aitken mode at 45 nm; and (3) a third mode, at 300 nm, resulting from forced bursting of bubbles. The forced bursting occurs when bubbles fail to burst upon reaching the surface and are later shattered by splashing associated with breaking waves and/or wind pressure at the surface. At 4°C, the accumulation mode diameter was reduced to 85 nm, the Aitken mode diameter was reduced to <30 nm and the 300 nm mode diameter was reduced to 200 nm. With the addition of SDS, the relative importance of the mode resulting from forced bursting increased dramatically. The laboratory results were compared to the observed seasonality of North Atlantic marine aerosol where a progression from mode radii minima in winter to maxima in summer is seen. The bimodality and the seasonality in modal diameter can be mostly explained by a combination of the three modes observed in the laboratory and their variation as a function of sea-surface temperature and seawater surfactant concentration. These results indicate that submicron primary aerosol modes would on a first approximation result from bubble bursting processes, although evidences of additional secondary processes leading, during summer, to a higher amplitude of the Aitken mode and mode 2 smoothed into mode 3 still need to be investigated.
Abstract. We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm −3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm −3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN obserCorrespondence to: D. V. Spracklen (dominick@env.leeds.ac.uk) vations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R 2 =0.46) but fail to explain the observed seasonal cycle (R 2 =0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental BL were also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles was increased or a Published by Copernicus Publications on behalf of the European Geosciences Union. 4776 D. V. Spracklen et al.: Explaining global aerosol number concentrations mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J , proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R 2 =0.3) than by increasing the number emission from primary anthropogenic sources (R 2 =0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation-type nucleation parameterizations gave similar agreement with observed monthly mean CN concentrations.
[1] The relationship between the AOD and wind speed (U), obtained at the Mace Head atmospheric research station, is determined for clean marine (Northeast Atlantic) conditions under steady-state wind speed scenarios. AOD measurements were made under much higher wind speed conditions (up to 18 m s À1) than hitherto measured. The AOD is found to be approximately dependent on U 2 , with a high correlation (r 2 = 0.97) determined at all measured wavelengths of 862 nm, 500 nm, 412 nm and 368 nm. A corresponding anti-correlation was observed between the Å ngström exponent and wind speed (r 2 = 0.93). The results illustrate that under moderate-to-high wind conditions, sea-spray AOD can rival or even exceed that associated with pollution plumes over oceanic regions and can potentially contribute to radiative, dynamical and biogeochemical feedback processes associated with future climate change.
Abstract. Flux estimates of COo_, CH4, N20, and CFCs over western Europe have been inferred from continuous atmospheric records of these species at the atmospheric research station of Mace Head, Ireland. We use radon (222Rn) which has a fairly uniform source over continents as a reference compound to estimate unknown sources of other species. The correlation between each species and 222Rn is calculated for a suite of synoptic events that have been selected in the Mace Head record over the period 1996/97. In the following, we describe the method and its uncertainties, and we establish data selection criteria that minimize the influence of local sources over Ireland, in the vicinity of the station, in order to select synoptic events originating from western Europe. We estimate western European flux densities of 45-30 103 kg C km-month dunng wintertime for CO2, of 4.8-3.5 10 J kg CH4 km -2 yr -•, 475-330 kg N20 km -2 yr -•, 2.5-1.8 kg CFC-11 km -2 yr -• for CFC-11, and 4.2-2.9 kg CFC-12 km -2 yr -• for CFC-12. Our estimates are independent, although in good agreement with those produced by inventories, except for CFC-11 where our estimate is much lower than the inventory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.