Purpose: Automated delineation of structures and organs is a key step in medical imaging. However, due to the large number and diversity of structures and the large variety of segmentation algorithms, a consensus is lacking as to which automated segmentation method works best for certain applications. Segmentation challenges are a good approach for unbiased evaluation and comparison of segmentation algorithms. Methods: In this work, we describe and present the results of the Head and Neck Auto-Segmentation Challenge 2015, a satellite event at the Medical Image Computing and Computer Assisted Interventions (MICCAI) 2015 conference. Six teams participated in a challenge to segment nine structures in the head and neck region of CT images: brainstem, mandible, chiasm, bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands. Results: This paper presents the quantitative results of this challenge using multiple established error metrics and a well-defined ranking system. The strengths and weaknesses of the different auto-segmentation approaches are analyzed and discussed. Conclusions: The Head and Neck Auto-Segmentation Challenge 2015 was a good opportunity to assess the current state-of-the-art in segmentation of organs at risk for radiotherapy treatment. Participating teams had the possibility to compare their approaches to other methods under unbiased and standardized circumstances. The results demonstrate a clear tendency toward more general purpose and fewer structure-specific segmentation algorithms.
We describe a segmentation method that was used in the Head and Neck Auto Segmentation Challenge held at the MICCAI 2015 conference. The algorithm consists of two building blocks. First, we employ a multi-atlas segmentation to obtain an initial segmentation for the considered organs at risk. Secondly, we use an Active Shape Model (ASM) segmentation to refine the initial segmentation of some of the organs. Leave-one-out experiments with the training data were used to determine suitable parameters for the individual steps of the segmentation. The ASM refinement resulted in improved segmentation for the optic nerves and submandibular glands, while for the brain stem, parotid glands, chiasm, and mandibular bone, the multi-atlas segmentation was preferable. Our submission achieved the second rank in the challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.