CASL in schizophrenia revealed patterns of hypo- and hyperperfusion similar to the perfusion patterns in previously published positron emission tomographic and single photon emission computed tomographic studies. The advantages of CASL, including independence from injected contrast agents, no irradiation, and fast acquisition time, may facilitate intensive perfusion studies of the early recognition of schizophrenia and other psychiatric disorders, as well as longitudinal disease-monitoring research of these conditions.
This study provides evidence that fast proton spectroscopic imaging may detect the regional pattern of disturbed neuronal integrity in patients with AD with high spatial resolution in a short acquisition time.
Our initial data in five patients with a total of 31 vessel wall alterations show promising results indicating for the first time the feasibility of (18)F-FMCH for in vivo imaging of structural WA in humans.
With echo-shifted multishot echo-planar imaging, dynamic susceptibility-weighted perfusion MR imaging at high field strength is feasible without relevant image distortions. Compared with contrast agent dose for 1.5 T imaging, the dose for 3.0 T can be reduced to 0.10 mmol.
This is the second part of a two-part series on the clinical applications of high-field-strength (3.0-T) magnetic resonance (MR) imaging and spectroscopy. In this part, the current level of evidence regarding the use of higher magnetic field strengths for cardiac imaging techniques (including the assessment of cardiac anatomy and function), breast and pelvic imaging, musculoskeletal applications, pediatric imaging, and MR spectroscopy is presented. Published data are interpreted from the perspective of the clinical radiologist. Specific difficulties associated with high-field-strength MR for body imaging and for spectroscopic applications are reviewed and compared with the expected or documented added value of high-field-strength MR for clinical patient care. The overall number of studies published on clinical body high-field-strength MR is still small, and there is evidence for a clinical advantage for selected, but not all, body MR imaging applications. Even without published evidence, clinical experience suggests substantial clinical advantages for musculoskeletal and pediatric applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.