Herein, the synthesis and pharmacological evaluation of thiophene bioisosteres of the highly potent spirocyclic benzopyran 1 are detailed. The synthesis of 1-benzyl-6'-methoxy-6',7'-dihydrospiro[piperidine-4,4'-thieno[3.2- c]pyran] (2a) was performed starting with 3-bromothiophene (3). After introduction of the acetaldehyde substructure (7), halogen metal exchange, addition of 1-benzylpiperidin-4-one, and cyclization led to the spirocyclic thienopyran 2a. The removal of the benzyl group afforded the secondary amine 2f, which was substituted with various residues. With respect to sigma 1 affinity the N-benzyl derivative 2a, the N-cyclohexylmethyl derivative 2d, and the N-p-fluorobenzyl derivative 2i represent the most potent compounds of this series binding with K i values of 0.32, 0.29, and 0.62 nM, respectively. Electronic properties of the substituents have only little impact on sigma 1 affinity. The most potent sigma 1 ligands display high selectivity against sigma 2, 5-HT 1A, 5-HT 6, 5-HT 7, alpha 1A, alpha 2, and NMDA receptors. The activity of 2a in the mouse capsaicin assay seems to indicate sigma 1 antagonistic activity.
On the basis of the 6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] framework, a series of more than 30 σ ligands with versatile substituents in 1-, 2'-, and 6'-position has been synthesized and pharmacologically evaluated in order to find novel structure-affinity relationships. It was found that a cyclohexylmethyl residue at the piperidine N-atom instead of a benzyl moiety led to increased σ(2) affinity and therefore to decreased σ(1)/σ(2) selectivity. Small substituents (e.g., OH, OCH(3), CN, CH(2)OH) in 6'-position adjacent to the O-atom were well tolerated by the σ(1) receptor. Removal of the substituent in 6'-position resulted in very potent but unselective σ ligands (13). A broad range of substituents with various lipophilic and H-bond forming properties was introduced in 2'-position adjacent to the S-atom without loss of σ(1) affinity. However, very polar and basic substituents in both 2'- and 6'-position decreased the σ(1) affinity considerably. It is postulated that the electron density of the thiophene moiety has a big impact on the σ(1) affinity.
Alcohols Q 0230 Novel, One-Pot Procedure for the Synthesis of 2-Arylethanol Derivatives. -It is demonstrated that non-toxic ethylene sulfate represents an interesting C-2 building block for the synthesis of hydroxyethyl derivatives. -(SCHLAEGER, T.; OBERDORF, C.; TEWES, B.; WUENSCH*, B.; Synthesis 2008, 11, 1793-1797; Inst. Pharm. Med. Chem.,
An efficient one-pot synthesis of 2-arylethanol derivatives using ethylene sulfate as a C 2 building block is described. High yields are obtained upon trapping of aryllithium intermediates generated by halogen-metal exchange or directed metalation with ethylene sulfate. The resulting heteroaryl or phenylethanol derivatives represent versatile building blocks for the synthesis of annulated pyran derivatives by oxa-Pictet-Spengler reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.