Objectives: Evaluation of in vitro efficacy of three different implant surface decontamination methods in a peri-implant bone defect model.
Material and methods:A total of 180 implants were stained with indelible red color and distributed to standardized peri-implant bone defect resin models with a circumferential defect angulation of 30°, 60°, or 90° (supraosseous defect). Sixty implants were assigned to each type of defect. All implants were cleaned by the same examiner. For each type of defect, 20 implants were cleaned for 2 min with one of 3 devices: curette (CUR), sonicscaler (SOSC), or air abrasion with glycine powder (APA).Thereafter, photographs were taken from both sides of each implant and the cumulative uncleaned implant surface area was measured by color recognition technique.Scanning electron micrographs (SEM) were examined to assess morphologic surface damages.
Objectives: The present randomized clinical trial assesses the six-month outcomes following surgical regenerative therapy of periimplantitis lesions using either an electrolytic method (EC) to remove biofilms or a combination of powder spray and electrolytic method (PEC). Materials and Methods: 24 patients with 24 implants suffering from peri-implantitis with any type of bone defect were randomly treated by EC or PEC. Bone defects were augmented with a mixture of natural bone mineral and autogenous bone and left for submerged healing. The distance from implant shoulder to bone was assessed at six defined points at baseline (T0) and after six months at uncovering surgery (T1) by periodontal probe and standardized x-rays. Results: One implant had to be removed at T1 because of reinfection and other obstacles. None of the other implants showed signs of inflammation. Bone gain was 2.71 ± 1.70 mm for EC and 2.81 ± 2.15 mm for PEC. No statistically significant difference between EC and PEC was detected. Significant clinical bone fill was observed for all 24 implants. Complete regeneration of bone was achieved in 12 implants. Defect morphology impacted the amount of regeneration. Conclusion: EC needs no further mechanical cleaning by powder spray. Complete re-osseointegration in peri-implantitis cases is possible.
Objectives Evaluation of surgical and non-surgical air-polishing in vitro efficacy for implant surface decontamination. Material and methods One hundred eighty implants were distributed to three differently angulated bone defect models (30°, 60°, 90°). Biofilm was imitated using indelible red color. Sixty implants were used for each defect, 20 of which were air-polished with three different types of glycine air powder abrasion (GAPA1-3) combinations. Within 20 equally air-polished implants, a surgical and non-surgical (with/without mucosa mask) procedure were simulated. All implants were photographed to determine the uncleaned surface. Changes in surface morphology were assessed using scanning electron micrographs (SEM). Results Cleaning efficacy did not show any significant differences between GAPA1-3 for surgical and non-surgical application. Within a cleaning method significant (p < 0.001) differences for GAPA2 between 30°(11.77 ± 2.73%) and 90°(7.25 ± 1.42%) in the non-surgical and 30°(8.26 ± 1.02%) and 60°(5.02 ± 0.84%) in the surgical simulation occurred. The surgical use of air-polishing (6.68 ± 1.66%) was significantly superior (p < 0.001) to the non-surgical (10.13 ± 2.75%). SEM micrographs showed no surface damages after use of GAPA. Conclusions Air-polishing is an efficient, surface protective method for surgical and non-surgical implant surface decontamination in this in vitro model. No method resulted in a complete cleaning of the implant surface. Clinical relevance Air-polishing appears to be promising for implant surface decontamination regardless of the device.
Purpose: Bacterial biofilms are a major problem in the treatment of infected dental and orthopedic implants. The purpose of this study is to investigate the cleaning effect of an electrolytic approach (EC) compared to a powder-spray system (PSS) on titanium surfaces. Materials and Methods: The tested implants (different surfaces and alloys) were collated into six groups and treated ether with EC or PSS. After a mature biofilm was established, the implants were treated, immersed in a nutritional solution, and streaked on Columbia agar. Colony-forming units (CFUs) were counted after breeding and testing (EC), and control (PSS) groups were compared using a paired sample t-test. Results: No bacterial growth was observed in the EC groups. After thinning to 1:1,000,000, 258.1 ± 19.9 (group 2), 264.4 ± 36.5 (group 4), and 245.3 ± 40.7 (group 6) CFUs could be counted in the PSS groups. The difference between the electrolytic approach (test groups 1, 3, and 5) and PSS (control groups 2, 4, and 6) was statistically extremely significant (p-value < 2.2 × 10−16). Conclusion: Only EC inactivated the bacterial biofilm, and PSS left reproducible bacteria behind. Within the limits of this in vitro test, clinical relevance could be demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.