MSC: 03B45 03B70Keywords: Predicate liftings Behavioral equivalence Hennessy-Milner Theorem Stochastic relations Coalgebraic and modal logic Measurable selections a b s t r a c t We generalize stochastic Kripke models and Markov transition systems to stochastic right coalgebras. These are coalgebras for a functor F 路 S with F as an endofunctor on the category of analytic spaces, and S is the subprobability functor. The modal operators are generalized through predicate liftings which are set-valued natural transformations involving the functor. Two states are equivalent iff they cannot be separated by a formula. This equivalence relation is used to construct a cospan for logical equivalent coalgebras under a separation condition for the set of predicate liftings. Consequently, behavioral and logical equivalence are really the same. From the cospan we construct a span. The central argument is a selection argument giving us the dynamics of a mediating coalgebra from the domains of the cospan. This construction is used to establish that behavioral equivalent coalgebras are bisimilar, yielding the equivalence of all three characterizations of a coalgebra's behavior as in the case of Kripke models or Markov transition systems.
Categories of lax (T, V )-algebras are shown to have pullback-stable coproducts if T preserves inverse images. The general result not only gives a common proof of this property in many topological categories but also shows that important topological categories, like the category of uniform spaces, are not presentable as a category of lax (T, V )-algebras, with T preserving inverse images. Moreover, we show that any such category of (T, V )-algebras has a concrete, coproduct preserving functor into the category of topological spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.