In the photoactive film of organic solar cells, the orientation of the absorber molecules is one of the key parameters to achieve high absorption and high photocurrents as well as efficient exciton and charge transport. However, most organic absorber small molecules, such as zinc-phthalocyanine (ZnPc) or diindenoperylene (DIP) grow more or less upright standing in crystalline thin films. Considering absorption, this molecular alignment is unfavorable. In this work we control the orientation of ZnPc and DIP in crystalline absorber films by varying the substrate or organic underlayer appropriately. For this purpose, a precise evaluation of the molecular orientation and packing is important. We find that a combination of the methods variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) can fulfill this requirement. The combination of these complementary methods shows that the growth of DIP and ZnPc is nearly upright standing on weakly interacting substrates, like glass or amorphous charge transport films. In contrast, on strongly interacting metal sublayers and PTCDA templating layers, both molecules arrange in a strongly tilted orientation (mean tilt angle 54°-71°with respect to the substrate normal), inducing a significant enhancement of absorption (maximum extinction coefficient from 0.72 to 1.3 for ZnPc and 0.14 to 0.4 for DIP). However, even when deposited on metal or PTCDA sublayers, not all ZnPc and DIP molecules in the film are oriented in the desired flat-lying fashion. This highlights that classifying organic films into either solely flat lying structures or solely upright standing structures, as often made in literature, is a too simplified picture.
In this work we apply a joint experimental and theoretical approach to investigate thin films of side chain substituted dicyanovinyl quaterthiophenes (DCV4T-Et2) and DCV4T-Et2:C60 blends, prototypic absorbers for small molecule organic solar cells. Structural characterization of the morphology of thin films thermally deposited at different substrate temperatures on a silica surface was performed by variable angle spectroscopic ellipsometry, grazing incidence X-ray diffraction, and atomic force microscopy measurements. These methods, combined with full-atomistic molecular dynamic (MD) simulation, provide detailed information about thin film morphology, namely about molecular orientation, absorption, phase separation, and crystallinity, i.e., factors that affect the efficiency of organic solar cells. Using molecular dynamics simulation, we can constitute why the DCV4T-Et2 molecules arrange strongly tilted in pristine (69°to 70°tilt angle to the substrate normal) and DCV4T-Et2:C60 blend films (tilt angle of 65°to 69°).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.