In the last four decades several methods have been used to model occupants' presence and actions (OPA) in buildings according to different purposes, available computational power, and technical solutions. This study reviews approaches, methods and key findings related to OPA modeling in buildings. An extensive database of related research documents is systematically constructed, and, using bibliometric analysis techniques, the scientific production and landscape are described. The initial literature screening identified more than 750 studies, out of which 278 publications were selected. They provide an overarching view of the development of OPA modeling methods. The research field has evolved from longitudinal collaborative efforts since the late 1970s and, so far, covers diverse building typologies mostly concentrated in a few climate zones. The modeling approaches in the selected literature are grouped into three categories (rule-based models, stochastic OPA modeling, and data-driven methods) for modeling occupancy-related target functions and a set of occupants' actions (window, solar shading, electric lighting, thermostat adjustment, clothing adjustment and appliance use). The explanatory modeling is conventionally based on the model-based paradigm where occupant behavior is assumed to be stochastic, while the
Revised Manuscript with No Changes MarkedClick here to view linked References data-driven paradigm has found wide applications for the predictive modeling of OPA, applicable to control systems. The lack of established standard evaluation protocols was identified as a scientifically important yet rarely addressed research question. In addition, machine learning and deep learning are emerging in recent years as promising methods to address OPA modeling in real-world applications.
Occupant behavior (OB) and in particular window openings need to be considered in building performance simulation (BPS), in order to realistically model the indoor climate and energy consumption for heating ventilation and air conditioning (HVAC). However, the proposed OB window opening models are often biased towards the over-represented class where windows remained closed. In addition, they require tuning for each occupant which can not be efficiently scaled to the increased number of occupants. This paper presents a window opening model for commercial buildings using deep learning methods. The model is trained using data from occupants from an office building in Germany.In total, the model is evaluated using almost 20 mio. data points from 3 independent buildings, located in Aachen, Frankfurt and Philadelphia. Eventually, the results of 3100 core hours of model development are summarized, which makes this study the largest of its kind in window states modeling. Additionally, the practical potential of the proposed model was tested by incorporating it in the Modelica-based thermal building simulation. The resulting evaluation accuracy and F1 scores on the office buildings ranged between 86-89 % and 0.53-0.65 respectively. The performance dropped around 15 % points in case of sparse input data, while the F1 score remained high.
The process of preparing Building Energy Performance Simulation (BEPS) models involves repetitive manual operations that often lead to data losses and errors. As a result, BEPS model inputs can vary widely from this time consuming, non-standardised and subjective process. This paper proposes a standardised method of information exchange between Building Information Modelling (BIM) and BEPS tools using the Information Delivery Manual (IDM) and Model View Definition (MVD) methodologies. The methodology leverages a collection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.