Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.
The accidental or fraudulent blending of meat from different species is a highly relevant aspect for food product quality control, especially for consumers with ethical concerns against species, such as horse or pork. In this study, we present a sensitive mass spectrometrical approach for the detection of trace contaminations of horse meat and pork and demonstrate the specificity of the identified biomarker peptides against chicken, lamb, and beef. Biomarker peptides were identified by a shotgun proteomic approach using tryptic digests of protein extracts and were verified by the analysis of 21 different meat samples from the 5 species included in this study. For the most sensitive peptides, a multiple reaction monitoring (MRM) method was developed that allows for the detection of 0.55% horse or pork in a beef matrix. To enhance sensitivity, we applied MRM(3) experiments and were able to detect down to 0.13% pork contamination in beef. To the best of our knowledge, we present here the first rapid and sensitive mass spectrometrical method for the detection of horse and pork by use of MRM and MRM(3).
Concentrations of the main dimeric and trimeric procyanidins (PC) and their monomeric constitutive units catechin (CT) and epicatechin (EC) were determined in food samples by using reversed phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (RP-HPLC-ESI-MS/MS). In a first step, 12 PCs (PC B1, B2, B3, B4, B5, B6, B7, B8, C1, C2, and A2 and cinnamtannin B1), of which most are not commercially available, were isolated from plant materials or synthesized and purified by a combination of column chromatographic separation techniques with different stationary phases. These PCs in combination with CT and EC were used as standard substances for identification and quantification during the following screening of food samples by RP-HPLC-ESI-MS/MS analysis. The main focus of the newly developed RP-HPLC-ESI-MS/MS method is the compensation of matrix effects by using the echo-peak technique simulating internal standard injection. The suitability of this new method was demonstrated by the determination of recovery rates being 90% or higher. Use of this method allowed the determination of patterns and concentrations of PCs in 55 food samples.
Polyphenols are a group of plant secondary metabolites with a wide range of structural differences. In many cases, in vitro and in vivo studies of polyphenols revealed beneficial health effects. The mass spectrometric characterization of polyphenols can be the key to understanding the metabolism and resorption of this group of substances. For structure elucidation of polyphenolic compounds nuclear magnectic resonance spectroscopy is the method of choice. Due to the broad structure variability and the sometimes relatively low concentrations of polyphenols and/or their metabolites in foods as well as physiological samples, mass spectrometry could be an alternative for structure elucidation. Especially high-resolution mass spectrometry, for example, Fourier transformation mass spectrometry (FTMS), is a valuable tool. Using a FTMS system, a systematic approach to the fragmentation behavior of phenolic and polyphenolic compounds was chosen to verify the influence of the structure on the fragmentation pattern of the different substances. Depending on the structure, specific fragment ions could be detected. Therefore, it is possible to gain reliable information about the structure of the pseudomolecular ion from its fragmentation spectrum, which is of great aid in the structure elucidation of unknown polyphenols and/or their metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.