Molecules labeled with fluorine-18 are used as radiotracers for positron emission tomography. An important challenge is the labeling of arenes not amenable to aromatic nucleophilic substitution (SNAr) with [(18)F]F(-). In the ideal case, the (18)F fluorination of these substrates would be performed through reaction of [(18)F]KF with shelf-stable readily available precursors using a broadly applicable method suitable for automation. Herein, we describe the realization of these requirements with the production of (18)F arenes from pinacol-derived aryl boronic esters (arylBPin) upon treatment with [(18)F]KF/K222 and [Cu(OTf)2(py)4] (OTf = trifluoromethanesulfonate, py = pyridine). This method tolerates electron-poor and electron-rich arenes and various functional groups, and allows access to 6-[(18)F]fluoro-L-DOPA, 6-[(18)F]fluoro-m-tyrosine, and the translocator protein (TSPO) PET ligand [(18)F]DAA1106.
Molecules labeled with fluorine-18 (F) are used in positron emission tomography to visualize, characterize and measure biological processes in the body. Despite recent advances in the incorporation of F onto arenes, the development of general and efficient approaches to label radioligands necessary for drug discovery programs remains a significant task. This full account describes a derisking approach toward the radiosynthesis of heterocyclic positron emission tomography (PET) radioligands using the copper-mediatedF-fluorination of aryl boron reagents with F-fluoride as a model reaction. This approach is based on a study examining how the presence of heterocycles commonly used in drug development affects the efficiency ofF-fluorination for a representative aryl boron reagent, and on the labeling of more than 50 (hetero)aryl boronic esters. This set of data allows for the application of this derisking strategy to the successful radiosynthesis of seven structurally complex pharmaceutically relevant heterocycle-containing molecules.
[(18)F]FMTEB, [(18)F]FPEB, [(18)F]flumazenil, [(18)F]DAA1106, [(18)F]MFBG, [(18)F]FDOPA, [(18)F]FMT and [(18)F]FDA are prepared from the corresponding arylboronic esters and [(18)F]KF/K222 in the presence of Cu(OTf)2py4. The method was successfully applied using three radiosynthetic platforms, and up to 26 GBq of non-carrier added starting activity of (18)F-fluoride.
An X-ray crystal structure of Kelch-like ECH-associated protein (Keap1) co-crystallised with (1S,2R)-2-[(1S)-1-[(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)methyl]-1,2,3,4-tetrahydroisoquinolin-2-carbonyl]cyclohexane-1-carboxylic acid (compound (S,R,S)-1 a) was obtained. This X-ray crystal structure provides breakthrough experimental evidence for the true binding mode of the hit compound (S,R,S)-1 a, as the ligand orientation was found to differ from that of the initial docking model, which was available at the start of the project. Crystallographic elucidation of this binding mode helped to focus and drive the drug design process more effectively and efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.