A performance comparison between a recently proposed novel technique known as fast orthogonal frequencydivision multiplexing (FOFDM) and conventional orthogonal frequency-division multiplexing (OFDM) is undertaken over unamplified, intensity-modulated, and direct-detected directly modulated laser-based optical signals. Key transceiver parameters, such as the maximum achievable transmission capacity and the digital-to-analog/analog-to-digital converter (DAC/ADC) effects are explored thoroughly. It is shown that, similarly to conventional OFDM, the least complex and bandwidth efficient FOFDM can support up to ∼20 Gb/s over 500 m worst-case multimode fiber (MMF) links having 3 dB effective bandwidths of ∼200 MHz × km. For compensation of the DAC/ADC roll-off, a power-loading (PL) algorithm is adopted, leading to an FOFDM system improvement of ∼4 dB. FOFDM and conventional OFDM give similar optimum DAC/ADC parameters over 500 m worst-case MMF, while over 50 km single-mode fiber a maximum deviation of only ∼1 dB in clipping ratio is observed due to the imperfect chromatic dispersion compensation caused by one-tap equalizers.
The transmission performance of coherent dual-polarization multi-band OFDM (DP-MB-OFDM) and QPSK (DP-QPSK) are experimentally compared for 100 Gb/s long-haul transport over legacy infrastructure combining G.652 fiber and 10 Gb/s WDM system. It is shown that DP-MB-OFDM and DP-QPSK have nearly the same performance at 100 Gb/s after transmission over a 10 × 100-km fiber line. Furthermore, the origin of performance degradations and limitations of the DP-MB-OFDM is explored numerically, as well as the impact of transmission distance and sub-band spacing.
Duobinary formats are today considered as being one of the most promising cost-effective solutions for the deployment of 40 Gb/s technology with direct detection on existing 10 Gb/s WDM long-haul (metropolitan and core) transmission infrastructures. Various methods for generating duobinary formats have been developed in the past few years but to our knowledge their respective performances for 40 Gb/s transmission have never been really compared experimentally. Here, we propose to evaluate at 40 Gb/s their respective robustness with respect to the most stringent transmission impairments, namely ASE noise, chromatic dispersion, polarization mode dispersion and nonlinear effects. We demonstrate that, owing to its enhanced resistance to intra-channel nonlinearities as compared to non-return-to-zero, duobinary can permit to reach transmission distances compliant with metropolitan and core applications on G.652 standard single mode fibre when quasi single-channel transmission conditions are met. We show furthermore that shifting optical duobinary filtering from the transmitter output to the receiver input can be of high interest to improve further the system maximum reach. We show also that phase-shaped binary transmission (PSBT) formats are fully compliant with 50-GHz channel spacing and that they are, in terms of transmission performance, as good as partial differential phase shift keying (Partial-DPSK), which is considered by equipment suppliers as the preferential transport solution for deployment of 40 Gb/s technology with direct detection on existing 10 Gb/s WDM metropolitan and core transmission infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.