In this paper, we present an original work on subwavelength optical switching performed over a coherent multiband orthogonal frequency-division multiplexing (MB-OFDM) super-channel operating at 100 Gbps. After having demonstrated that dual-polarization MB-OFDM (DP-MB-OFDM) is as efficient as single-carrier dual-polarization quaternary phase shift keying (DP-QPSK) technology to transport 100 Gbps data-rate over a 10 × 100-km G.652 fiber-based transmission line, we show that optical add-drop of OFDM sub-bands as narrow as 8 GHz inside a 100 Gbps DP-MB-OFDM signal constituted of four sub-bands is feasible in the middle of this 1000-km transmission line. The flexible optical add-drop multiplexer (FOADM) implemented here is constituted by the association of an ultra-narrow pass-band and stopband optical filter. The design and realization of such ultra-selective optical filters is presented, while the impact of their physical features over the quality of transmission is discussed. To prove that several add-drop multiplexers can be cascaded, our FOADM is introduced into a G.652 fiber-based recirculating loop and the impact of the cumulated filtering transfer function as well as the crosstalk inside the OADM are investigated. A typical use case for the introduction of such FOADM into long-haul transport networks is given, and the capital expenditure (CAPEX) cost advantage for the multi-layer transport networks is highlighted. By the proof of concept delivered here, combination of super-channel and subwavelength optical switching pushes network flexibility far away of what is today proposed by system vendors, opening new horizons for an optimized use of multi-layer transport networks.
The transmission performance of coherent dual-polarization multi-band OFDM (DP-MB-OFDM) and QPSK (DP-QPSK) are experimentally compared for 100 Gb/s long-haul transport over legacy infrastructure combining G.652 fiber and 10 Gb/s WDM system. It is shown that DP-MB-OFDM and DP-QPSK have nearly the same performance at 100 Gb/s after transmission over a 10 × 100-km fiber line. Furthermore, the origin of performance degradations and limitations of the DP-MB-OFDM is explored numerically, as well as the impact of transmission distance and sub-band spacing.
Duobinary formats are today considered as being one of the most promising cost-effective solutions for the deployment of 40 Gb/s technology with direct detection on existing 10 Gb/s WDM long-haul (metropolitan and core) transmission infrastructures. Various methods for generating duobinary formats have been developed in the past few years but to our knowledge their respective performances for 40 Gb/s transmission have never been really compared experimentally. Here, we propose to evaluate at 40 Gb/s their respective robustness with respect to the most stringent transmission impairments, namely ASE noise, chromatic dispersion, polarization mode dispersion and nonlinear effects. We demonstrate that, owing to its enhanced resistance to intra-channel nonlinearities as compared to non-return-to-zero, duobinary can permit to reach transmission distances compliant with metropolitan and core applications on G.652 standard single mode fibre when quasi single-channel transmission conditions are met. We show furthermore that shifting optical duobinary filtering from the transmitter output to the receiver input can be of high interest to improve further the system maximum reach. We show also that phase-shaped binary transmission (PSBT) formats are fully compliant with 50-GHz channel spacing and that they are, in terms of transmission performance, as good as partial differential phase shift keying (Partial-DPSK), which is considered by equipment suppliers as the preferential transport solution for deployment of 40 Gb/s technology with direct detection on existing 10 Gb/s WDM metropolitan and core transmission infrastructures.
We demonstrate burst mode functionality on a continuous commercial receiver piloted by real-time control plane in an end-to-end sub-wavelength switching test-bed. The results show the receiver can maintain its continuous performance with marginal penalty regardless of data burst absence duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.