95, email address : christophe.lett@ird.fr sakina.ayata@normalesup.org (S.-D. Ayata), martin.huret@ifremer.fr (M. Huret), irisson@normalesup.org (J.-O. Irisson).
Abstract:Climate may act on the dispersal and connectivity of marine populations through changes in the oceanic circulation and temperature, and by modifying species' prey and predator distributions. As dispersal and connectivity remain difficult to assess in situ, a first step in studying the effects of climate change can be achieved using biophysical models. To date, only a few biophysical models have been used for this purpose. Here we review these studies and also include results from other recent modelling efforts. We show that increased sea temperature, a major change expected under climate warming, may impact dispersal and connectivity patterns via changes in reproductive phenology (e.g., shift in the spawning season), transport (e.g., reduced pelagic larval duration under faster development rates), mortality (e.g., changes in the exposure to lethal temperatures), and behaviour (e.g., increased larval swimming speed). Projected changes in circulation are also shown to have large effects on the simulated dispersal and connectivity patterns. Although these biophysical modelling studies are useful preliminary approaches to project the potential effects of climate change, we highlight their current limitations and discuss the way forward, in particular the need for adequate coupled hydrodynamic-biogeochemical simulations using atmospheric forcing from realistic climate change scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.