This paper presents a new software for design of through-the-wall imaging radars. The first part describes the evolution of a ray tracing simulator, originally designed for propagation of narrowband signals, and then for ultra-wideband signals. This simulator allows to obtain temporal channel response to a wide-band emitter (3鈥塆Hz to 10鈥塆Hz). An experimental method is also described to identify the propagation paths. Simulation results are compared to propagation experiments under the same conditions. Different configurations are tested and then discussed. Finally, a configuration of through-the-wall imaging radar is proposed, with different antennas patterns and different targets. Simulated images will be helpful for understanding the experiment obtained images.
There exist a lot of methods for vision through an opaque medium. At present UWB (Ultra-Wideband) technology is used more and more because it is suitable for localization and detection of a human body behind a wall. First of all this paper describes known methods for vision through walls, which can be divided into two general groups-imaging and non-imaging systems. Secondly it describes the state of the art UWB radar for this application and its specifics. Finally it depicts our UWB radar system (centre frequency 4,7GHz) and our practical procedures relevant to the detection of a human body presented behind a concrete wall.
There exist a lot of methods for vision through an opaque medium. At present UWB (Ultra-Wideband) technology is used more and more because it is suitable for localization and detection of a human body behind a wall. First of all this paper describes known methods for vision through walls, which can be divided into two general groups-imaging and non-imaging systems. Secondly it describes the state of the art UWB radar for this application and its specifics. Finally it depicts our UWB radar system (centre frequency 4,7 GHz) and our practical procedures relevant to the detection of a human body presented behind a concrete wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.