Engineering nanostructure in bulk thermoelectric materials has recently been established as an effective approach to scatter phonons, reducing the phonon mean free path, without simultaneously decreasing the electron mean free path for an improvement of the performance of thermoelectric materials. Herein the synthesis, phase stability, and thermoelectric properties of the solid solutions Cu(2+x)Zn(1-x)GeSe(4) (x = 0-0.1) are reported. The substitution of Zn(2+) with Cu(+) introduces holes as charge carriers in the system and results in an enhancement of the thermoelectric efficiency. Nano-sized impurities formed via phase segregation at higher dopant contents have been identified and are located at the grain boundaries of the material. The impurities lead to enhanced phonon scattering, a significant reduction in lattice thermal conductivity, and therefore an increase in the thermoelectric figure of merit in these materials. This study also reveals the existence of an insulator-to-metal transition at 450 K.
Inspired by the promising thermoelectric properties of chalcopyrite-like quaternary chalcogenides, here we describe the synthesis and characterization of the solid solution Cu 2 Zn 1−x Fe x GeSe 4 . Upon substitution of Zn with the isoelectronic Fe, no charge carriers are introduced in these intrinsic semiconductors. However, a change in lattice parameters, expressed in an elongation of the c/a lattice parameter ratio with minimal change in unit cell volume, reveals the existence of a three-stage cation restructuring process of Cu, Zn, and Fe. The resulting local anisotropic structural disorder leads to phonon scattering not normally observed, resulting in an effective approach to reduce the lattice thermal conductivity in this class of materials.
b Figure S1. Refined metal-chalcogen bond distances of the solid solution series Cu 2 ZnGeSe 4-x S x with x = 1,2,3,4 showing a linear trend of increasing bond distances with increasing molar fraction of selenium.
The incongruently melting single-filled skutterudite InxCo4Sb12 is known as a promising bulk thermoelectric material. However, the products of current bulk syntheses contain always impurities of InSb, Sb, CoSb, or CoSb2, which prevent an unbiased determination of its thermoelectric properties. We report a new two-step synthesis of high-purity InxCo4Sb12 with nominal compositions x = 0.12, 0.15, 0.18, and 0.20 that separates the kieftite (CoSb3) formation from the topotactic filler insertion. This approach allows conducting the reactions at lower temperatures with shorter reaction times and circumventing the formation of impurity phases. The synthesis can be extended to other filled skutterudites. High-density (>98%) pellets for thermoelectric characterization were prepared by current-assisted short-time sintering. Sample homogeneity was demonstrated by potential and Seebeck microprobe measurements of the complete pellet surfaces. Synchrotron X-ray diffraction showed a purity of 99.9% product with traces (≤0.1%) of InSb in samples of nominal composition In0.18Co4Sb12 and In0.20Co4Sb12. Rietveld refinements revealed a linear correlation between the true In occupancy and the lattice parameter a. This allows the determination of the true In filling in skutterudites and predicting the In content of unknown AxCo4Sb12. The high purity of InxCo4Sb12 allowed studying the transport properties without bias from side phases. A figure of merit close to unity at 420 °C was obtained for a sample of a true composition of In0.160(2)Co4Sb12 (nominal composition In0.18Co4Sb12). The lower degree of In filling has a dramatic effect on the thermoelectric properties as demonstrated by the sample of nominal composition In0.20Co4Sb12. The presence of InSb in amounts of ∼0.1 vol% led to a substantially lower degree of interstitial site filling of 0.144, and the figure of merit zT decreased by 18%, which demonstrates the significance of the true filler atom content in skutterudite materials.
Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general. The electrical resistivity of WO2.722 shows a metallic behaviour with temperature, while WO2.90 has the characteristics of a heavily doped semiconductor. The low thermopower of 80 μV K(-1) at 1100 K for WO2.90 is attributed to its high charge carrier concentration. The enhanced thermoelectric performance for WO2.90 compared to WO2.722 originates from its much lower thermal conductivity, due to the presence of crystallographic shear and dislocations in the crystal structure. Our study is a proof of principle for the development of efficient and low-cost thermoelectric materials based on the use of intrinsically nanostructured materials rather than artificially structured layered systems to reduce lattice thermal conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.