Authors Suppressed Due to Excessive Length characterization of asteroids and comets, as well as the determination of the physical properties of Kuiper Belt Objects and exoplanets are discussed.
The Martian limb (that is, the observed 'edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere.
Context. The atmosphere of Mars is characterised by a complex seasonal cycle of cloud formation related to the condensation of CO2 and H2O, and to the lifting of surface dust. Several decades of spacecraft observations have provided an impressive amount of data to constrain cloud properties. However, observations of a given cloud obtained from Mars orbit are typically limited in time sampling and spatial coverage. As a complement to this existing dataset, Earth-based telescopic observations have the potential to provide a global and dynamic view of some large-scale Mars clouds. Aims. On 17 November 2020, Mars and Earth were close to opposition. We took advantage of this configuration to attempt observing large-scale high-altitude atmospheric phenomena from Earth with a high time sampling, over several hours. Methods. Ten amateur astronomers were coordinated along with professional astronomers to observe Mars. Results. We observed the occurrence of a large-scale high-altitude cloud system, extending over thousands of kilometres from the equator to 50°S. Over 3 h, it emerged from the night side at 92−16+30 km and dissipated on the dayside. It occurred at a solar longitude of 316° (southern summer) concomitantly to a regional dust storm and west of the magnetic anomaly. Despite its high altitude, it was composed of relatively large particles (effective radius in the 1–2 µm range). While dust appears an unlikely candidate, possible composition by CO2 or H2O are both conceivable, although the whole properties of the cloud makes it atypical compared to previously reported clouds. We discuss the possible connections with the dust storm, along with the hypothetical role of nucleation from cosmic particle precipitation. Conclusions. We continuously followed a high-altitude huge cloud system on Mars from Earth, emerging from the Martian night, from its appearance at the terminator until its complete dissipation. It is either a large-grained water ice cloud system or an extended mid-summer dawn CO2 cloud system.
<ul> <li><strong>Introduction</strong></li> </ul> <p>The goal of this work is to calculate the geometric albedo of Jupiter in various photometric bands (and one non photometric). The geometric albedo is defined as the ratio between the brightness of Jupiter as observed as if it was placed at 1 Astronomical Unit (AU) from the Sun, and 1 AU from the observer, to that of a theoretical perfectly reflecting and flat surface of the same area. For this, the first result that must be obtained is the apparent magnitude of Jupiter in each desired band. The formula used to calculate the geometric albedo is taken from Mallama [1]</p> <p>Photometry is usually performed using non variable stars as references. The process is complicated because it involves compensating for differences in airmass and differences in colour index. To the contrary of stars, moons are not steady sources of light, since their own magnitude is going to vary considering the solar angle, their position respective to Jupiter, and the observed longitude. But, this kind of variation can be predicted, and their effect on magnitude calculated with an acceptable precision for the ambition of this work.</p> <ul> <li><strong>Method</strong></li> </ul> <p>The planet is imaged with the method of lucky imaging, ensuring that one galilean moon is within the same field. After a selection of good frames, they are stacked with a unnormalized arithmetic addition. Then, it is possible to calculate the magnitude of Jupiter using the moon as reference, from the equation of simple differential magnitude, example for the V band:</p> <p>Vjup = vjup + (Vmoon-vmoon)</p> <p>Where the lower case represents the instrumental magnitude, the upper case the transformed/catalogue magnitude.</p> <ul> <li><strong>Photometry in U, B, V bands</strong></li> </ul> <p>The apparent magnitude of the moon in the image is adjusted from an article written by R.L.Millis and D.T.Thompson in 1975 [2]. They provide first the V magnitude of each one of the moon in function of the solar angle, and for various ranges of surface longitude. This data can be compared and modified following various modern ephemeris sources, so the V magnitude of the reference moon can be reliably obtained at the moment of observation.</p> <p>Then, Millis and Thompson provide the value of the B-V and U-B colour index of each moon in function of the observed surface longitude; as a result, if one has a reliable value for V, he can hope to calculate with a good precision the value of the B and U bands at the moment of the observation. The figure 1 is taken from [2]:</p> <p><img src="data:image/jpeg;base64, /9j/4AAQSkZJRgABAQIAJQAlAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCAJTA58DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD7LooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPhrwb/wApI5/+wlf/APpBNX24NO09dVfVhY2o1B4Ft2uxEvnNErFhGXxkqGZiFzjJJ718R+Df+Ukc/wD2Er//ANIJq+5aACiiigAooooAKKKKACiiigApEdHG5GVgCRkHPIOCPwIxXGfHl0T4HePGdlUHw5qAyTjk20gA/EnFea/sDO7fs8WSszEJqN0FBPQbwcD8ST+NAHv1FFFABRRRQAUUUUAFFFFABVSDU9NuL+XT4NQtJbyEEy26TK0iAYBJUHI6jr6irdfJvwK/5P1+J3/YNuf/AEfaUAfWVFFFABRRRQAUUUUAFFFFABRRXyd+1e7p+1R8FyjMpOo2oyDjg3sYI/I4oA+saKKKACiiigAooooAKKKKACvln/gpGJv+FWeHCpTyRrYDgld27yJduBjdjG7OCB0yDxj6mr5N/wCClH/IkeEv+wlN/wCiqAPd/wBnmzhsfgT4FhgDBG0CzmOTn5pIVdv/AB5jXd153+zPIknwA8EMkEUAGjwLtjbIJC4LfViNxHYkivRKACiiigAooooAKKKKACiiuO+OTvH8E/HUkbMjr4c1AqynBBFtJyKAOxor58/4J/yK/wCz5Co6x6rcqeQeflPY8de+PyxX0HQAUUUUAFFFFABRRRQAUUUUARRXFvLNNBFPE8sBAlRXBaMkZAYdsgg89qlr5A/Yru57v9oT4s3Etyk7XFzNNI8QZY5GN3IdwBAOOTjIBAPavr+gAooooAKKKRnRSqsygucKCepwTgfgCfwoAWikjdJEWSNldGAKspyCD3FLQAUUiujFlVlJQ4YA9DgHB/Ag/jUV1d2tp5X2q5hg86UQxeZIF3ueiLnqxxwBzQA25vrK2uILa5vLeGe5JEEckgVpSMZCgnLYyOnrVivkD9rXVtKX9qX4Rs2p2SrYahaPeEzqBbKL1CTJz8gwCcnHQ19f0AFFJG6SIskbK6MAVZTkEHuKbJNFFnzJUTClzuYD5R1P0GRz70APoqKC4t50ikgnilSZPMiZHBDpx8wx1HI5HqKloAKKKKACiiigDwP9vdtv7O1+PMdd2oWowvRvnzg89OM9+QPqGfsCf8m82v8A2Err/wBCFSft6zCP9nXUUMMUnm39qgZwcx/vN25eevy45zwx+tM/YGR1/Z4smZWAfUboqSOo3gZH4gj8KAPfqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPzg+JHhXX/G37ZfiHwx4X1GHTdXvdSuPs9zNO8SJst2kbLIrMMqjDgHrjpXdf8ADK3x9/6KJov/AIOr7/4zR4N/5SRz/wDYSv8A/wBIJq+5aAPh61/ZU+OrTAXXxJ0qKLBy0erXrtnBxwYh3wOvA556VpQfsnfFhoIzP8WkSUqC6pPdMqtjkAkjIz3wPoK+z6KAPhs/sR+LCgjPjrRygJIX7NLgE4yf0H5Un/DEPir/AKHjRf8AwGlr7looA+Gv+GIfFX/Q8aL/AOA0tH/DEPir/oeNF/8AAaWvuWigD4Vb9ijxKt1Hanxzo/myI0ij7HNjapUHnoPvLweT26Gpf+GIfFX/AEPGi/8AgNLX3LRQB8BeN/2PfE/hjwbrXiWTxfo9zHpNhNfSQrBIrOkSF2APPJCnHvXP/BH9mbXfil4Ei8WWHibTdOgkuJIBDPA7MChAJyOOc196fGDT73VvhL4x0rTrd7m9vNBvre3hT70kjwOqqPckgV51+xLoOt+HPgRaaf4g0i+0m9N/cyfZr2BoZQpbglGAIzg4yPegDw5v2LPGjOHb4g6YWXZgmGbI2Danf+EcD0HSr1t+yR8UYYyifFeKEF3bbHJc4JZiS3UcknJ9yevWvtGigD4bf9lX49A/J8RtHIwOus3w5xz/AMsfX/IpP+GVvj7/ANFE0X/wdX3/AMZr7looA+Gv+GVvj7/0UTRf/B1ff/GaP+GVvj7/ANFE0X/wdX3/AMZr7looA+Gv+GVvj7/0UTRf/B1ff/GaP+GVvj7/ANFE0X/wdX3/AMZr7looA+Gv+GVvj7/0UTRf/B1ff/Ga8q8E/Bnx/q/xp1z4e6Jrum2niHR4ZZru9+2TRwsqtGrbXVN5yZV6qO9fp1XzD8GfDfiLT/22viHrl/oOq2mlXunXItb6ezkSCc+fanCSEbW4B6E9DQB5x/wyt8ff+iiaL/4Or7/4zTT+yn8ejIJD8QtELgEBv7ZvcgHGR/qfYflX3PRQB8Nf8MrfH3/oomi/+Dq+/wDjNH/DK3x9/wCiiaL/AODq+/8AjNfctFAHw1/wyt8ff+iiaL/4Or7/AOM0f8MrfH3/AKKJov8A4Or7/wCM19y0UAfCd5+yV8cr2IRXnjvw/cRhg4WXV71wGHQ4MHUetV/+GNvi3NdTXd14u8Lm4kG4y/brp3kcEEbiYQeoBzzjA4r70ooA+E779ibxy1q80PjPw/PethikyzKjMT82XCsfXnbz7V5n8RvgJr/gb4jeD/BOp63plxd+J5YIY57cOY4HkmWI53AFlBYHPBI7Cv04r52+PXw/8QeJf2mPhf4jsNIvbrSdLljkvrpGJigMU/mrkbsAk9wOeM5AAoA8el/Yi8ZCKYxeM9BaQA+SrRSqHOONxwdvPHAPHPtUv/DEPir/AKHjRf8AwGlr7looA+Gv+GIfFX/Q8aL/AOA0tH/DEPir/oeNF/8AAaWvuWigD4a/4Yh8Vf8AQ8aL/wCA0tH/AAxD4q/6HjRf/AaWvuWigD4Qj/Yq8Wxrbpe+NdCinnlaNEit55FyAzD5tox8qk8gDPGTxm1/wxD4q/6HjRf/AAGlr7looA+Gv+GIfFX/AEPGi/8AgNLXmH7QXwC1j4PaPpepalr9jqiahcNAiW8ToUKruyd1fppXyb/wUo/5Ejwl/wBhKb/0VQB5T8Mv2S/EvjjwHpHiyDxZpNlFqcHnxwPDIzIu4gAkY5wP/wBddH/wxD4q/wCh40X/AMBpa+rP2fbWCz+BXgWG2j2I3h+ylIyT8zwo7Hn1ZifxruaAPhr/AIYh8Vf9Dxov/gNLTX/Yh8WAfJ420QnI628o4zz+n+RX3PRQB8Qp+xl48t7v+0LX4iaal8oOyYJOj524++ORxx9KzrL9iv4iKsKy+MPDkCyZ+0CF52C8MBt/drv4IHO37zdcc/d9FAHwtrP7G3xOe/8At9p450K9u2xvnu57mOTpj7wRyeAB9PpVRP2KfiNK6yXXivwvvcFpmEtw5D/N0zEN2fkyTj7zcHaN33pRQB8HXv7EvjxA/wBi8W+GpiAdvnefHk5XGcI2OC/r91f7x25PjL9kDxv4Z8Ean4mufE3h2caXYTX13BGZh8kSF2CMU+Y7VOMhecdOo/QeuU+Mlld6n8IfGenafbS3V5daBfQW8ES7nlka3dVVQOpJIAHvQB8G/Aj9m3xP8TPBn/CXaZ4o03SbeSaW1RHWRpCANr52gAAhiMZOQTmuxg/Yj8aGeUT+MvD6RDHlMkczM3JzuBUbeMdCep9OfoD9ijw/rnhr4FWeneIdJvdKvTfXEv2e7hMUoVmGCVbkZ969soA+GE/Yh8WEfP420QHJ6W8p4zx+n+TTv+GIfFX/AEPGi/8AgNLX3LRQB8Nf8MQ+Kv8AoeNF/wDAaWj/AIYh8Vf9Dxov/gNLX3LRQB8Nz/sT+MpplaXx3o8uEC73hlLAKAqqPYKMdeAAPon/AAxD4q/6HjRf/AaWvuWigD4a/wCGIfFX/Q8aL/4DS1En7EXjIzYfxnoIjwfmEUpbOeOMenPXrxz1r7qooA/Mr4W/ADX/AB58RfFngy21rT7KbwxPJb3V08bvHI6TNFhcDoSjHnBwOnXHqH/DEPir/oeNF/8AAaWvTv2NfBnibw18QPipfeKPD19p0l3qMItLm7gI+0L5lyzmOQ8OpzGSVJB+WvpegD4a/wCGIfFX/Q8aL/4DS0f8MQ+Kv+h40X/wGlr7looA+Gv+GIfFX/Q8aL/4DS01v2IfFmV2+NtEIJ+bNvKMDB6evOPSvueigD4a/wCGIfFX/Q8aL/4DS0f8MQ+Kv+h40X/wGlr7looA+Gz+xB4n2Ajx1o+/JyPskmAOMc5+vb/6yf8ADEPir/oeNF/8Bpa+5aKAPzK+KXwD1rwJ8RvCfgmfXtPvrvxNPHBbzpG6Rws8yxAtnJxlgeO1eof8MQ+Kv+h40X/wGlr0z9qjwF468S/G/wCGmveE9ImuLfTbmIzXqhTHaMtyj73HJCgfN0PAPXGK+maAPht/2IPE4PyeOtHIwOtpIOcc9/X/ACKT/hiHxV/0PGi/+A0tfctFAHw7B+xB4lMoE/jvSUj7slnIxH4Ej+dM/wCGIfFX/Q8aL/4DS19y0UAfDX/DEPir/oeNF/8AAaWrM37DutBZvJ+IOnuw2eUH011D5Hz7sOduD0xnPU7elfblFAHw1/wxD4q/6HjRf/AaWlb9iDxPhdvjrRySPmzaSDByenPPGPSvuSigD84vjd+zNrvwt8CS+LL/AMTabqMEdxHAYYIHViXJAOTxxivp79gT/k3m1/7CV1/6EKX9vlgP2eL0FFbOo2oBOfl+c8j+XPrSfsCf8m82v/YSuv8A0IUAe/0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfDXg3/lJHP/2Er/8A9IJq+5a+IvhRpqXH/BQ7X5rKC0SGyvdSuZRJNtYFo2RmjAbDOXl5U5wpc4BXj7doAKKKKACqWt6tpWh6XNqmt6nZaZYQbfNurydYYo9zBRudiAMsQBk9SBV2vlj4V6ZD8ePjZ408WeNmbU/DnhnURYaHosvNmdpkXzZIjkM20BjnOTIR0UCgD3Twh8Vfhx4t1RdL8OeNNG1C/f8A1dqlyBLJhWY7EbBfCqxO0HAGTiuzrhPG/wAIPhv4w0E6Nq/hLSkhAAiltbZIJoMEH93IgBX7oyBwQMEEV2t/d21hY3F9eTpBbW8TSzSucKiKMsxPoACaAD7Xa/bvsH2mH7X5XneR5g8zZnG/b1254z0zTNR1HT9OSF9QvrWzWedLeEzyrGJJXO1I1yeWYnAUck9K+OdK8V+LdK+NPhD45eLtWttP8PeMbu50a2t7gqqWmkkq9szPngFyXJIGNm5jhyF9o/bE03Uta+Fum6Po12tnqd94j022s7hpGjEMzzBUcsoLLhiDkAkY4oA9nrPl1zRYhqZl1fT0Gkrv1ItcoPsa7PMzNz+7Gwhstj5eeleIfs5/GfWNU126+FnxVt00jx7peI1EhC/2goUHIwSpk24b5Th1O5eM4v8AwZ0q01jxn8btL1S1+0adqGvG1uI2yFlje2CumRg8q3Y55oA9n0rUdP1bToNR0q+tb+yuF3w3FtKssUi+qspII9xRBqOnz6jc6dBfWst7aKj3NukqtLCr52F1Byoba2Ceu046V8jfC/xlqH7OHiHxh8M/HF9dXGjW9tLqXhJnRpBdZY7YY8fdaQkZXhVdZDkbst6P4K8Nz+B/gf42+IPjoS/8Jd4h0651LXHlCq8eIn8q1jG7aAoICrnJZsHoAAD3Wwu7W/sbe+sbmG6tLmJZoJ4ZA8cqMMq6sOGUgggjgg1BreraVoelzaprep2WmWEG3zbq8nWGKPcwUbnYgDLEAZPUgV8x/sPeP9Zslf4NeMrV7LUtOtvt2lNdS7ZJLaQJIIVXb820OXB3E7WwAAhxz3/BQPxfrGqRp4Q0HzZdE0gRXPiC4gf92k8rEQW8hDYLYUvsIJ5Vu3AB9e63q2laHpc2qa3qdlplhBt826vJ1hij3MFG52IAyxAGT1IFY2ifELwDrmqQ6Xonjjwzqd/Pu8q1s9Vgmlk2qWO1FYk4UEnA6AmvFv21r2XU/wBla31GdUWW7nsJ5AgIUMw3EDOeMmtv4Eap8AdV1HQY/B1p4U/4S+20lJN1npiw3C7owJTuCDL8MG53AMQcB+QD1HX/AB74G8PaidO1/wAaeHNJvVUObe91SGCUKeh2uwOD61a8MeLPCvij7R/wjPiXRdb+zbftH9nX0Vx5W7O3dsY7c7Wxnrg+lfKT+H9D8S/8FEvEWneIdJstVshYxS/Z7uESxFlsLfBKtwce9dh+018IfC3hX4d33xE+Helw+FfE3h+UX0FzppMAZS6rIu1SFA2kkDGOCuMMaAPoPxJ4h0Dw1YpfeI9c0zRrSSUQpPf3aW8bOQSEDOQC2FY464B9KreGvGXhDxPPNB4b8VaFrUsKh5Y9P1CK4aNScAsEY4Ge5r45+PXimy8X6H+zp4p8bvayWV5PLJrb7P3TxrNZrOSqjgEK5KgccgV9H/BeH4HXOuarqnwrt/Dn9orEEvZNNj2MkcjbguMAKpZOigD5R6CgD1OiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvk3/gpR/yJHhL/sJTf+iq+sq+Tv8AgpQxHgTwmmFwdTlP3RniL169/wDOKAPeP2fTOfgV4FNymx/+EfsgBvDfL5KbTkAdVwcds4ycZPc1xnwJ/wCSIeA/+xb07/0mjrs6ACiiigCG/u7Wwsbi+vrmG1tLaJpp55pAkcSKMs7MeFUAEkngAV55B8efg7PPHCnxD0INIwUF5iigk45ZgAB7kgCvKfjVc6n8R/2qPDfwdvmdPB1pbDUtVto5SovSqtIBJgqSuVjQKM4LM3PG32/Wfhd8ONX0BtCvvA/h9tOKlVhisI4vL4IzGyANG2CcMpBGeDQB1sE0VxBHPBKksUih45EYMrKRkEEdQR3pn2u1+3fYPtMP2vyvO8jzB5mzON+3rtzxnpmqGm2mj+EfCVtYxyxWGjaLYJEslxNhILeGMAF3Y8BVXlie2TXxnYeLPG2jfG3wr8fvEt/bw+EfGV7NpMCPO5+waf5m2NJVbaqLhRNlSQSruQCcEA+1Nb1bStD0ubVNb1Oy0ywg2+bdXk6wxR7mCjc7EAZYgDJ6kCrUE0VxBHPBKksUih45EYMrKRkEEdQR3rxb9uK7tbb9mjxLDcXMMMt1LZw26SSBWmcXUTlEB+82xHbA5wrHoDXqfgT/AJEfQf8AsG2//opaALMeuaLJr8nh+PV9PfWIoPtElgtyhuEiyB5hjzuC5YDdjHI9an1XUdP0nTp9R1W+tbCyt13zXFzKsUUa+rMxAA9zXhPh3/k/XxJ/2JCf+j7euz/ao/5N58a/9g1v/QloA9D0rUdP1bToNR0q+tb+yuF3w3FtKssUi+qspII9xXKWvxY+Gl14nXwzb+OdBl1ZphAlut4hLykgCNWztZySBtBznjGeK8k0i18X3v7Bmn23gQXp8QPo0P2YWcgSYoLhTKEOR83lCTgfMei8kVgfs061+z54p0TwdoFx4f0TS/HukCB9s1j9nuZry3AHmidVAlLN8/lsxOeqnbmgD6Cv/ib8NrC+uLG++IXhK1u7aVoZ4JtZt0kidThkZS+VYEEEHkEVJofxF+H+u6vHo+ieOPDWp6jKCYra01SGaSTAZjtVWJbAVicdAMnivG/21vBHgey+BPifxHbeENGttca5t5l1G201EuDLJdRiR3lRc/MrPkscEsO5FdD8I/C3gTwd8C/D/wAQrXwloNtrFp4Tg1KbUfsaCbf9iDSP5mNw3AtuIPIJzQB3vxF+JngT4eQwyeMfElppRmG6KJg0k0gyBlY0DORk9QMVmfD/AONXwu8eauNH8LeL7S91FgxjtpIpbeSTaNzbFlVS+ACTtzwCegNeLfsT+F7PxzpWvfFfx5aLr/iK/wBTktbe51JfPEUKohPlB8heXZOOiptGASD1/wC1r8OvCrfCLV/Fml6TaaN4i0GFbqw1OwiEE8e2RSV3R7SQQWAznaWyOeoB73RXF/AvxHqfi74Q+GPEmsvE+o39gklw8abFd+QWx0GcZ44yeABxXaUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHgH7ff/ACbzdf8AYStf/QjS/sDKB+zxZEOrZ1G6JAz8vzjg/wA+PWnft77f+Gdr/dsz/aFrt3Zznf2x3xnrxjPfFW/2FobyP9mzQXuZlkiluLt7ZQf9XH9okUqeP76ue/3vwoA9xooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Nv2XnWT9uH4qMkKRALqy7UJwSNRhBPJPJIye2ScADAr7Jr4z/AGWP+T3vir/3GP8A05Q19mUAFFFFABXy94Wv5v2dfil4stfFGh3cfgDxPqf22w8QwK0sVlIwJ8mYLuYDL7ATg/JnDAkr9Q1DfWlrfWr2t7bQ3Vu+N8U0YdGwcjIPB5AP4UAfL37WHx38JXfwoks/h58RGXX5L2ExtpVxNFMIwSX+dAMDHqRmuz/ac1KbxXrHh74F6NcXEN94pcXOrXEI5tNNiYs7HPHzmNgOedhU/eAPq9p4O8JWepLqVn4Y0W1vVlEouILGOOTeEKBiygEkKSOe1bElvbyXEVzJBE88QYRyMgLIGxuAPUZwM+uBQB89/HD9mvwDdfCbVofAvgy1tPEVpbCTTZIJJTI7IylkOX+dnRWXL55bPWuZtfG9z4r+AXwNvvOxcHx3o2l342cuYHkAJJ7t5Ubkj1xxyK+r6hgtLWC3FvBbQxQq28RpGAobduzgcZ3c59eaAPKv2lvg3b/Fjw1bPp91FpfinS383S9RbcoB6mJyvzBCcHIBKkAjPIbl/wBiKz8V2nhnxunjK6uptZj8UzW94LiTe3nxwQh33fxbgU+bJDAA+5+g6ZHDFG8jxxIjStvkKqAXbAXJ9ThQM+gHpQB80ftgRW7/ABs+A4khVnk8R7GJxhk+02XykY56/wA/Wu+/bHvZdP8A2avGM8KozNBBAQ4JG2S5ijY8d8Mce+K9WuLS1uJYZbi2hmkgbfCzxhjG3qpPQ+4pbq3t7qEwXUEU8RIJSRAykggg4PoQD9RQB84/tleBLyy0TR/in4AsobLxN4ZuYQZLW23SvbkiNAqAFX2My/KVPylucDBxPH3w71/w5+xN4sXxDa3GoeM9Umi1jXJci4l8wXcTMdy5+WOBOcEquHIOCa+rqSREkRo5FV0YEMrDIIPY0AfIXxw1F9V/YC8J3ciMri30yFtz7ixjHl7iffZn8e/WvX/g58cPhd4mTw74M0TxP9r16SxSJLX7BcplooNzje0YTgIx6844zxXq02nafPpw02axtZLIKqC3eJTEFXG0bSMYGBgdsCq+n6BoWn3AubDRdNtJwCBJBaojYPUZAzQB8f614x8N+Bv+CgviTXfFWpLpunCzhhM7RPIA72NuFBCKT+OMDvXV/HH4pWPxs8IT/DD4M2t74nvdVaE6hfC2ltrewgSVXy7SqpBJRR0xtLdTgV9K6hoGhahcG5v9F027nIAMk9qjtgdBkjNTaZpmm6Yjx6bp9pZI5y628Kxhj6naBmgD4+/aO0fS/hfefs7aVq1/52m+Hb5zfXbxFgyRzWTyvsUE7eGIUZOMDk9fov4Z/F74Y/EHW7zSvBPiCLUNRSE3lzGLGeBmQFI95MkahsZRepOMdq7TU9J0rVPL/tPTLK+8rPl/aIFk2ZxnG4HGcD8hTNN0PRdMnafTdH0+ylZdhkt7ZI2K5BxlQOMgce1AGhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXyb/wUo/5Ejwl/2Epv/RVfWVfJv/BSj/kSPCX/AGEpv/RVAHv3wGDj4HeA97KT/wAI5p/QY4+zR47+n+RXaVxnwJ/5Ih4D/wCxb07/ANJo67OgAooooA+bPjx4Q8U+EvjxoXx58N6TdeIdO0+2MGt6dbkefHFseNpI1yDINkmdvOGTJ+Unb0s/7VfwRj0tb1fFNxLIwH+ipptx5wPGQcoF4z13YODgmvbqz4dD0WDUTqUOj6fHelmc3CWyCUs2dx3AZycnJ75NAHif7SniXUvEsHhD4Q6FBdadqHj5lN/JPHiawsEAkmyoYDzNoYFckYSQfxKazfjr+zl8NYfg1r8vhLwjb6frOmWD3dlPFLM8pMX7xkOWJkLKrKA2eWGMHkfR1FAHyR4w8Z3Pjn/gndeavqDyyahBDZ2N3LLI0jyyQ30CeYzNyzOoV2J/iY16X8Jf2gfhXrlv4W8I6d4gmk1q5torVbZrCddsqxgFS5Tbzg8gkV7TDDFAhSGJI1LM5CKACzEsx47kkknuSacyIxVmVSUOVJHQ4IyPwJH40AfLXibx74T+Hf7bOu634x1b+zLCfwlFaxy/Z5Zt0rSwsFxGrH7qMc4xx9K7P4w+PfCfxE/Zd8d634O1b+07CC2ktZJfs8sO2VfLYriRVP3XU5xjn617Vdadp93PFPdWNrPLCweKSSJWZGByCpI4IJ4Ip5tLU2stqbaE28u/zIvLGx95JfI6HcSSfXJzQB4t8IfGWkfD/wDZF8MeLdeW6bTbHT7dZ/s0YdwJJxECASMgFwTznAOATwfJfjl4h+Hnxw13wfo/wgKXHjmXWYp59Wh0uS3ksrVFYu8sjqpYKzI4A3cocEEgN9iR29vHaraRwRJbqgjWJUAQIBjaB0xjjFV9M0nStL8z+zNMsrHzceZ9ngWPfjOM7QM4yfzNAHk37bX/ACbF4u/7cv8A0tgrqvg/ZRan+z34O02dnWK78KWMEhQgMFa0RSRnPODXdyIkiNHIqujAhlYZBB7GiNEjRY41VEUAKqjAAHYUAfJ/wfu9U/Zgu9a8J/EWxu28F3179t0/xJZW7z28cjKqbJgi7kZlROOzKdoYHdWl8YPi3b/GTwnqPw2+DWkat4mutVWKC81ZLR4LPT0aQMfNaVBjckci8hf9kk8V9P0kaJGixxqqIoAVVGAAOwoA5z4XeFU8EfDvQvCaXbXf9l2SQPOV2+Y4HzMB2BYnA5wMcnrXSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHg37eaQN+znqbTTeW6X1o0K4Pzt5oGOAf4Sx5x069je/YfaRv2ZvDAcLtV7wJhSOPtcx5z15J6cfjmq37dvnf8M3615VpFOn2q0813TJgXz0+dT2O7aufRyO9VP2BP+TebX/sJXX/oQoA9/ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivn79tb4ieOPh/4Z8NyeBdSaxvtR1FoHKWkdw8gCfKgWRWHJI6DPSgD6Bor4Q/Zq/aJ+KevfGXw54c8U+I/7W0jUJWtZYGsbeNgTG2xw6IrZDBSck5Ge/Nfd9AHyL+yhb27ftcfGO6aNjcx3l/HG/zYCNfksPTkonXnjjvX11Xyb+yb/wAnT/Gn/sJXf/pdJX1lQAUVW1XUdP0nTp9R1W+tbCyt13zXFzKsUUa+rMxAA9zUWhazpGv6bHqeharY6rYyEhLmyuEmiYg4IDoSDggg80AXqKKKACiiigAooooAKKKKACiiigAorwn4bftJ6D4z+Nd98NYtCurQpPcQafqHn71u2gDM5aPaDECqMwyT0wcE4r3agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5N/4KUf8AIkeEv+wlN/6Kr6yr5N/4KUf8iR4S/wCwlN/6KoA9/wDgT/yRDwH/ANi3p3/pNHXZ1xnwJ/5Ih4D/AOxb07/0mjrs6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDxn9tr/k2Lxd/25f+lsFY37An/JvNr/2Err/0IVs/ttf8mxeLv+3L/wBLYKxv2BP+TebX/sJXX/oQoA9/orl/i5q99oHwq8W65pk7QX+n6LeXNrKIxJ5cqQuyNtIIOGAPII454r854/2jvjZHC0K+Pr4qwQEtbwM3yHIwxTI98H5hwcigD9QKK5/4a61c+JPh14Z8RXiIlzqmkWt7MqfdDywq7Ae2WNdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBWuNR0+3vIbO4vrWG5n/wBTC8qq8n+6pOT+FWa/OrxxNLP+3xbvNK8jDxppyAuxJCrNCqjnsAAAOwAr7n+NdxNafBrxtdW0jRTw+Hr+SN16qwt5CCPoRQB01hfWV/CZrG8t7qMHBeGQOoOAcZB9CD9CKsV8Nf8ABNf/AJHjxb/2DYf/AEbX3LQBFd3FvaW73N1PFBBGMvJK4VVHqSeBWdB4n8NXE8cEHiHSZZZGCRxpexszMTgAAHkk9q8v/ba/5Ni8Xf8Abl/6WwV8PfCf4KeIPiT4G8Q+J9D1PTYBoZPm210XVpQIy52soIzgYAOBnuKAP1Hor4l/4J8fEnxRc+K7n4dajd3eoaImnSXVkjLv+wsjoCN3VYyGxjJAbbgDcc/bVABRRRQAUUUUAcd8XPiV4V+F3hj+3/FN1KkTv5VvbwIHnuZMZ2opIHQZJJAHcjIr5/1L4ieDv2jvHXgXTPDF9d6JeeHtci1We31hfs8l3AjKXW3eFnHmcDALKeSQeKyv22haXf7Qnws07xLLajww0kP2oXFwY41je7VbguSQEXy1TLAg4BzjAqT4xW/g3Rf22fh+ugW+mWV5H5c2teS4jjjOG2GQD5UYRDdjAypQngg0AZWk/Chv2b9Z8K/Fjxrr9jdWWjC4s7iy01He4u5p/PWIQ+ZsU/u5WdsldoiON+a+hPgh8c/CvxdvtRtfDek+ILT+z4lkll1C3iSNtxwFUpI/zd8HHFY/7RPhDTfjt8ONH0Pwt400FQ+rC9t7lbhbiO4EUUyOsZjJ3EGQE4zjBzXnn7LXxD+INh8Z9Y+C/jPVrfxDb6TbyxwXcKDNu0JUY3hVLIQ235wSCFAIHFAFH9ja/tdV/aS+L2qWTu9reXdxPCzxNGxR7yRlJVgGU4I4IBHQgV9eV+b/AOzonxgvfiZ4qvPhXqDLqZEjaidcZGmmR5Tgy+YDmUN8xPXdnOQSD9FQf8Nj+fHv/wCEJ27hnfs24z3284+nNAHs3xl8B2XxL+HOqeDb6/utPjvVUpcQHJjkRg6FlyA67lGVOMjoVOGGZ+z78L7b4R/D8eFoNYm1eR7uW7nupIvKVnfaoCR7m2KFRRjccnceM4HW3XiXQbXxXZeFbjVbWPW762kurayZ/wB5JFGQGYD/AIFwOpCuRkI2JvEusWXh7w5qev6izrZabaS3lwUXcwjjQu2B3OFPFAGhVHRtZ0jWoZJ9H1Wx1KKNzG72lwkqq4JBUlScEEEEeoNfGnxd/bDk1bwhqHh3wx4SudK1O7Wazu5dSfcbeNkKNsVSCJQScbuF28hs4HpX7A3gS+8M/DK68VXd6+zxS0dxBYeU6LapE0qhhv5JcMDnGCqoctnNAHp/xW+MXgL4Y32mWXi/VntZ9Ry0SQwNMyRggGR1QEquTwcZOGwDg46+517RLXw+PEN3q9ja6OYUn+3TzrHAI3xtYuxAAO4YJPcVwnxp+CPgz4tX2kXnid9Til0vesZsp1j85GKko+5GyuV/hwRk818tftGfCr4s+LvjhpPg+10yJPDoh+y+GfJkf+zrGziRQS558twqoH4yxChdw2CgD6K+PHx/0b4b+FNH8Q6Jp9p4xtdUunt1lstVjWFNqBj+8VXyeRwB65I4z2fwt+I2jfEHwBB4q0cxSym38y5062uY557aTBPlNgjDnHAbbnI6V8jfs9fCz4laX8UZ/hr418HS6n4CS6nuNS+22jHTmlSMpHdW0zqP3jHy1GzDMhYMAA23tvgL+zx8RvAH7QVx4iuNctINAgEu67s444xqccmD5P2dTiFc4JGMKYxtz8rAAz/2Z/2m/F3jD40Hw14va0fStceUackcKobCQAukYcAF0IBT5gzFipyBkH0b9s34jfEr4faNoE3gCzZILuaUX+oCxFx5JXYY4xnKrvBkzuXJwNpBBqXxN+z/AKP4SsvE/i/4QaZ9i8b3No6aUsky+TaO7fvTbhsCN2jZ0BJ2rxjaN2dn9lXRfi1ovhXVYvive3U1xJfb9PhvL1Lu4ijxlt0qEgqSRgZ4weACBQB6P8PdR1PV/AHh3Vtbt/s2qXulW1xew+WY/LmeJWkXaeVwxIweR0qt4p8feC/CurWOk+JPE+laTfXw3W0N1cLGzjOM89BngE4BIOOhrB/aK8d6n8N/hNqvirR9L/tG9g2RxKwJjhLttEsmP4VJHHGTgZGc18l+BfB+sftUX+o+O/G+t3GhpoEMFnPNZ6Y8sV7GPMkdYiXxHIqnLBQw/eI23n5gD6m1a4+B3wt8avq2oyeF/DXiPWAzPK21J5FdiWcgcojMhyxAUleua9Lvru1sbV7q9uYbW3TG+WaQIi5OBkngckD8a/O2+1XRP2lv2m7SLUINQ8O2eoRfZLX7FB9pmlWLcwaXc4EZMe7LKGC7R8p+Z6+sv2svhLr/AMXfBmmaR4f1mysLixvvtJivWdYZsoVySgYhlDNj5T94jigD2WN0kRZI2V0YAqynIIPcUtcp8IPC9/4K+Gmg+FNT1htYutMtRbtdFNgZQTtQD+6ilUHfCiuroAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivDvjX+0p4U+F/xAsfCV/pV9qUjIJdSmtmUGyRhmPCt/rGPBIyuAQck8UAe418m/wDBSj/kSPCX/YSm/wDRVdp47+G3xs1/xbqGteEvjUunaFeuJrG1WMssUZUEAEZBHXBB5HNfOn7XPgn4oeFfDmh3Hj74i/8ACV2093IltDsZfJcJktyO44oA+1vgT/yRDwH/ANi3p3/pNHXZ18ffCb4TfHa7+GXhy98P/GiLS9KutOhuLSzjR2FvHIocJnHUbsH0Oa9t+D3hb4yaBr8r/EH4jWPifRVsPJt7aKwjilWfemJGcIGbCKw5Y5L5PTNAHqlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJJoo3jSSVEaVtkYZgC7YLYHqcKTj0B9KAH0UVy3xau/GFh8OdavPANna3viSGANZQXC7lc7l34GRltm8qM4LBc5HFAHU0V8LfCL9qn4m2njbSfC3xAi0y7tbrUIor28vrb7FcWkUhUGRim2NURSXO5OmcsByPevgp+0n4R+KHjm78J2OmahptyFeTT5LkqRdonLcL9xsfNt5GAecjFAHrP/CT+Gv+Ek/4Rn/hIdJ/t3bv/s37bH9q27d2fKzvxt5zjpzWtX5v+GfEGl3v7cVtra/2qtnd+LysYkdHmDySmNQc8CPewGBkqnAJIBP2x+0h8Rb/AOFvwtvPFWmaOuqXaTR28SyHEMLPkCSXBDFAcDC8ksoyASwAPSKK8M/ZR+M2pfEr4e6rq/jC1tdOl0WcRXGpB1itZ1ILZwT8jKMbs8cqQeSB7Xpt9ZanYQahpt5b3tncIJILi3kEkcqHkMrKSCD6igDgfih8a/h98NvEenaB4r1Sa1vb+ITKI7Z5FiiLlBI5A4XKt0yflPHTPocE0VxBHPBKksUih45EYMrKRkEEdQR3ryz4zfAz4e/ErxDZeKfF7ahFNptsIZGgvBDFJAjO+2TIOFBdzuUqeevAp/wU+N/w/wDidquo+H/CIvbaXSYgyQ3NssKzQBtnmQqrH5AdgwwUjcvHoAep0V5v8UPjh8NPhxfnTPE3iFU1QIsn2G2geeYKcY3bQVTg7sOVJHIzXkH7IPir42eL/HWqa14nmvp/Btza+cs1/amKJ5WY7fsZKjcmQ44yAu3d822gD6noorjvHvxO8EeBdb0PRvFOuRafea3MYrRWRmUYIG+RgMRpuZV3NgZOeisVAOxoorxn4weA/jR4m8VteeDvipD4b0VYlWGyW1w6tgbyzgZbJGRk8dh1yAH7bX/JsXi7/ty/9LYK5T9ivXNM8NfsrzeINZuVttO0+6vbi4lIztRSCcDqT2AHJJAHJrzT9oz4a/GzQfhBrGr+LPi3/wAJBols1ubrT9rp5oadETtg4dkbB9M9QKf4F0y61b/gnP4ntbNN8qXMlywwT8kNzDK54B6IjH09cDmgC/4w/a40Xxb4d17w3ceCdV0vQdZsLrS49ZNwJWiklgKgtCFAO0uCQshO3kAniuY0H9jPXNa0Sx1iw+IGiTWd9ZRXVtKlpNtkEg3DGcHbsKkEgHJwVHWsTxb46+H97+xJ4f8ACOlxw22v2+rqs9i0iyTCZd7yXWcAhHV8A443eWCwQmvo79nP4n+EE+Hug/DrUdeuI/Emm+HI7i6iEUrGGHyvMwJApXckRQ7c5XIXG5WVQDhvgh+0Zr8/hzSPCnh34O+IfEen6HZQaZ/aenTM4kMUQRXdfK2xbwu7a0hxnGT1r63r88/HWkaP8B7bw/42+EHxf/ti71GcrLaRSRuk0AUnMiI2CoYFSrrkMeNrLX394eu7i/0DTr67jWK4uLWKWVFUgK7ICQAeRgk9aAL1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAfnB4lma4/bvid4vLI8d2iY3hshbqNQcj1AzjqM4PINfdfx5dE+B3jxnZVB8OagMk45NtIAPxJxXy9+2f8E9e0zxafiz4CXU55Li5Se/jtGZp7O4XGyeLYNwXKgk5JVuRgHC+NeK/jl8Y/iD4fTwHf6ncXqTHy5oLOyC3N3t/gfYMt0yVAGcc5oA7j9hn+2/I+J/8AwjO/+3f+EYk/s3Zt3facP5WN3y537evHrVhJ/wBsxIfKC+LiuScmKEtyMdSM/wD1+ete9/sYfBrUPhh4VvtY8RFF13XVhaS2ABNnCgYrGTjO8lzvAOPlUdsn3+gD5x/aCm8U3H7DN/P42jaPxE9lp7agrIiN5v22DOVT5QcYJAxg9h0r5A+EHwj+IvxL0TWJfBkcT2Nu8cd5HJfCFZnwWVdpOGxjPPAJ69a+7/2ybG91H9m3xXZ6fZ3F5cuLQrDBGZHYLeQsxCgZOACT6AE18R/CXx38ZPhfp2o2HhLR76CDUHWSUT6O0pV1BAZSV9D3yOBx1yAdh+wj4ui8HfGy48LarpsQk15DYfaGQma1njLMEyD9xiCrDB+YRnICnP6FV8Rfsm/AXx5N8SbD4neOLGXRrW2uJrpLa7Uw3dzOdwDGLaDGm4k/NtJwMAq2a+3aACiiigAooooA4z4v/DTwt8UvC/8AYHiiCYxpKJre5tnCT27jgsjEEcjIIIIIPTIBHGfC79mn4Y+AbjUrm1tdQ1qfULSSykfVpkl8uCRSsqIERAN6nBbBbGQCAWB9mooA8b8U/s1fC/WvD2laJa2mq6Fb6SZjZvpt+4kjMzK0hLS792duOc4BIHbG38GPgp4K+FMl7deHV1C61C+XZcX2oTiWZ13FtvyqqgZIzhRnAznFek0UAfDX/BNf/kePFv8A2DYf/RtfYnxF8aeHvAHhO78TeJr5bWwthgAcyTOfuxxr/E5xwPqTgAkfHf8AwTX/AOR48W/9g2H/ANG19c/Fn4feHfiZ4On8MeJYHe2dvNgljbbJbzBWCyof7wDHg5BBIIINAHwT8Xte+GPjb4vx/ES28Z6zDp95B9tvNNltZRqEE8JRVtYnAMS+YMMrhysYD55CI32N8FvjP4d+MfgLWr220OZb7ToCuqaJIvnhldX2KrbQsqyBGGMZyCCMYJ8ss/2JvCcPiSwnn8Watc6NHExvLYxok00oI2hXAwqHnIwW4wDzlfon4aeBPDPw68Lx+HPClh9jsVlaZ9zl3lkbGXdjyzYAHsFAHAFAHyd+x3L4J+JmueI/DWq/B3wpbaZbomow3MEMszRv5m0RSPM7schiQFKrhH+U54+0rS3t7O1htLSCK3t4EWOKKJAqRoowFUDgAAAACnRwxRvI8cSI0rb5CqgF2wFyfU4UDPoB6U+gAooooA+Zv23vBfxb8VxaHN4Gea90W0YNNp9k/l3K3PzYnJyNyhSFABypJODnI9u+ENh4u0v4baHp/jvUYtR8RQW+29uI23BzuOwFsDcwTarN3IJyc5rq6+Zv2sfjP8Svhv8AEbw9o/hDRobnTLu2ikZpLF5ftdw8zr9nVh/FtjGFX5vn+lAH0zRUNhJPNY2811bfZbh4laWHeH8piMldw4ODxkdcVNQBFd29veWs1pdwRXFvOjRyxSoGSRGGCrA8EEEgg1X0XSdK0TTo9O0XTLLTLKLPl29pAsMSfRVAAq7RQBynh34ceBvDvi7UfFuieGrGx1vUgRdXcSnL5O5sDO1Nx5baBuOM5wK6uiigAooooAKKKKACiiigAooooAKKKKACvmD9tT4i/FbwdrHhe08FWV1p+nT3IK6hblJ2v7r+G18rBYADJwc+ZuwPuHPof7VniX4l+FfhqdV+GlglxdLOovrhYBPNawngPHEchzuIB+VsAk46svy54Z8N/tPfEn4jWza3q3iPRJbzSJs6hfRtbWkdnKqJIixooQM+IsoqhtwVzgqGAB9ufDTW9R8QeCdM1LWodPt9YaBV1GCxuknhhuABvVWRmGOhA3HAIGT1PR18t/s7eEbf9nLwhrvi34i/ELRDoupzQwW6abLLc27SAsNy/IGeQ/MCqIcKjEnAO3tvGf7Ufwn8M3+iwNqF9q1vq9ql3HeabCssMETuUzLl1dWBVtyBS67SCoOBQB7dRRRQAVR8Qaxpfh/RrrWdbv7fT9OtE8ye4ncKiL05J9SQAOpJAHJq9XI/FnwXo/jn4da94X1q+uLKw1FFknuVm/1BjZHVxvyqqDEpI4B+boSTQBoeBvGXhfxxoi614T1u01axJ2s8DfNG2M7XQ4ZGwQdrAHBHFb1eX/A/4beDvgx4LuINN117m21GdbmbUL64jVJCUAQJjChcDI6k7jyRgD0+N0kRZI2V0YAqynIIPcUALRUUtxbxTQwSzxJLOSIkZwGkIGSFHfABPHakv2uUsbh7ONJblYmMKO2FZ8fKCewJxQBwnxl+MPgn4UWlpJ4pvLhrm8P+jWVpF5k8ihgGfBIAUZzliM4IGTxWVrHw2+EfxmudA+I0+nw6ynlLJbXMZaNLuMN8qzIQC4UgjawBHKkdq/PD4i+LvEnxA+Izap8Q9Smt7szraXBNqR/Z8KuQY0h4ICZY7c5JzkliTXvcnxZv9S+C+l/D79nuLxLZXeiHF7EYYft95bsSWlhRGdyTK5ZxF8yg5ztDGgD7fjvtNjvV0qO8tEulQFbVZFEgQDqEznH4V8s/8FKFH/CCeE23qCNTlG3nJ/ddfTjH61hfB79nr4r6j8S/DHxZ8ceIrdJ2mg1K8iuJZf7R+UDbC6tHtX5AqkFgVGVwCK3P+ClH/IkeEv8AsJTf+iqAPcf2bZ0uPgH4HkSWWUDRbdN0hyQVQKR0HAIwPYDk9T6DXE/AOJYfgb4ERC5B8O2DfO5Y5a3Qnkk8ZPA6AYAwABXY3ZuBazG0WJrjY3lCUkIXxxuIBIGcZwKAJaK8A/Za1H46XfijxRa/E9Jv7ItW2wyX9l5EzXZb5hbFRskthh/myQf3RXALARftbfH/AFD4SXWjaN4YtNH1HWL1JJ7pL0u4togVCEojKTvJfB3cbDwc0AfQlFc38LfElx4w+HPh/wAU3Vg2nz6pYRXT25zhCy54zyVPUHuCK6SgAorM8PeIdA8RQTT+H9c0zV4oJTDNJY3aTrG4GSrFCcNgjg81p0AFFFcj4m+JngPw14s0zwprfiextNb1NxHa2ZJZyxxt37QRHu3DaXKhucZwaAOuooooAKK8g+F/7RXw9+IvxAuPBvh5tT+0rE8ltc3NuI4bsJ97y/m3j5fmG9VOAeARg+vO6INzsqgkDJOOScAfiTigBaKKKACiue+JHjHR/AHgjU/F+vG4/s7TkVpVt498jlnVEVRkDJZlHJA55IGTWB8C/ipo3xZ8KXOt6XZXWnS2d29pd2dyymSJwAwPB+6Qw5IHIYdqAPQKK8J/am0z47ahc6KfhDcTLaLFKL1La8gt5BLuXazGYjcu3cAFPXJPak8I/tFaRcfE+w+F2saTqX9ss7WEmop5Xky3kRaOUlFbKIZI5QOpwFOADkAHu9cP48+Lfw58C67ZaH4s8VWmmajegNDC6SPhS20M5RSI1J/icqOCc4Bx3FeI/G/9m/wp8U/Gdt4pv9V1LTbtIVhukg2slwin5fvfcOCRkdeOMgkgHt1fBf8AwUK1G8X4u6LbR+LGkjtrJJYtPQSJ/Zrlv9bkDBL8EFSXGzBAAXP1x8Z9S8QeDPgrrV94D037TqumWKJYwbDKUQMqM4U8sUj3OAc528g9D85fCH4W3n7QujN4w+McOrW2sWGofZUvYYI7J9RtVjDCJ4wgXCO3EiqGILLk7RsAPpPSNdtfB3wTsfEXiHxC+vW+m6JFdXWqxkOb0CIN5idN2/8AhzycjJJya+fNN/bOi1X4i6RpOmeCJn0S+ljtJDLcBbtZZJlUSKFyrKEJ/d8FmI+dQOeu/ap+L3hz4VaNpfw8/wCEGi1ux1CwEctlIxt7RLJf3flowU/PhcDH3PlPoKuaN4c+BfwS8AW/xUt9Cm0z7VBHLZz3n73UUNyg2xRJKx2yBGbIHIUPkkBqAPYobvwhrWu3tnDc6FqWr2kTW95CkkUtxDGescijLKvzcqePm96+OPjx+y14t0bxsNb+DenXE2mTIZDbxX6QzWMnIZUaR1ZkI6YJPJHNP/Yl+Feqap47X4qWfixZNDtZp4SQSL26mIUmOdDuVAQ4ZvnYn5cZ3bh9w0Afnx4S+Ddz8Fn0f4r/ABkMtjZadqcDWekaXNHPezXSuXj3HPlbP3ZcgSZKg9Dwex/aE/aP+GfxL8Ff8IVBp2ux21+sc7alJGqtp86tlQYgx80cENg4AYldxArzb9qnxD48uvjfd6H8S7rUI/D1tqUclvYW0jpaNaA/LLEvKtIY3bL4LBmZTjG0fV3w4+Bn7Pmr+H9C8U+G/Ctjq9k8Imtbme6mnWbs3mxs5RmBBDIy/KwIwMYAB8Z+J/BnxQ8JeLbz4D2U13cQ6vqMEiwW8Xlw6i4UGOTfjJjXO4gttUplgCmR9ufstfDPVPhF8Mp7DxNry3NzcTG8nhEp+y2C7RlFLHHYszcAnt8u5pfiB+0N8PvBHxKt/AWtHUzqMjQrNPBCj29qZcFfNO8MOGDHCngg16N4z0Cy8V+EtW8NajLdRWeqWklpO9tL5cqo6lSVbnnB7gg9CCCQQD4k0q5+JfxU/at1bVfA3ieXWdCsb+OO4vYpHisY9LMu4W8kbbfMUgMpTafMZXYZHzV9F6H8J/AvwO07xJ4/8FeHdTv9Ut9InxZm+ZjLGuJTGu7OMmNecM2BwCeCn7N3wC074N3WsX0fiK41u81ILEHa2ECRQqchdoZtzZPLZHQYA5z5l8f/AAn+0Dqn7R/hy98MalK+kC483Q7q3jItdKAjUTfasAgEgvy5bzFYqvUxqAeOfDP4c+IP2ofGnjHxfqmvW+iXsT28kpSzeaF2cMojXdLuUKkQwMtxgccV94/C3wVpXw88B6X4Q0be1rYRFTLJ9+aRmLPI3uzEnHQZwOAK6C1tLW0837LbQwedKZpfLjC73PV2x1Y45J5qagAryP4sfs9eAfiX4vg8T+IJNaiukWNJ4bS7CQ3SoflEgZWI4JXKFTgnnPNeuV8cftBftT+NtD8f6t4F8E+H7ewms5nsTd3ts8t1JNnCyQx5CgHIK7lcMCD0OKAPseivAP2dviF4w1j4Ia/4m+NEPkWFg1wHvLmz+zSXNuqAt+6VVVhlmQFAMkbcFgTXFeHv21NO1bxlYaMfh/cW+n3l+lsLxtVDSJG7hRIYhFjOCCVD+2T1oA9k/aujWX9nbxordBp+7oDyHUjqPb/DBriP2BWs779nb7GwiuETU7qC4iZdy/MFYqwPByrjj0Nd3+1R/wAm8+Nf+wa3/oS15l/wTi/5IhrP/YyT/wDpNbUAegWn7N/wUttf/tqPwHZNceaZRFLPNJbhiST+5ZzHt5+6V2jAwBXZr8P/AAUviS78SJ4Y0xNXvLY2txdrAA8kRUKVOPVQFz1wMdK6aigDyjQv2cvgxoviCDXLDwTbi7t3EkImu55okfn5vLdyh68ZBAwCACK9XoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK+fv2qfix4u8K+I/Cvw88AfZLTxF4luI0j1C52utuHl8pF8tlYfM5B3kEAKRtJOV5r4Z+Pfin8Pv2g7H4RfFPXodfsdVtvN0zUFhUuSwYo25cNtLpJGQ4JBAIwmCQD6morw79rj42y/CTwxZ2ei28Vx4j1kSLaNIQUtI1ADTMv8RywCqcAncSTtKtR/Yg8V6drnw0nsJPHWp+J/EEdybvUE1OR2mtTIifJHvZi0QYH5s4LFzgZoA8Z/wCCa/8AyPHi3/sGw/8Ao2vuWvgX/gnx4k8O+HPGniWTxDr2laOlzYRRwNfXkcAlfzPurvI3H2Ffb9r4v8J3RVbbxRok5YgAR38TZJAIHDdwQfxFAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH/GnwleeOvhbr/hLT7/7BdalbeVFOXZVUhlbDFedpxtYdwSOc12FFAH536p+yR8arW9tdGgGj6hp8pMzXNvqeLa3cjB3JIFfcQo5VG4xz1x9SaN+zF8LIfDHhnSta0j+17zQotpvmdoWuyXaRxIitgoXdiFOSBhdxGc+2UUARXdxb2drNd3c8VvbwI0kssrhUjRRksxPAAAJJNfm18VNM8Wv408ZfGXwJ4uXU9Gj1iYvq+k6o8VzYpNJsijdWKyquGEalQUIXg7cV+ivjDS9O1vwlrGi6vM0GnX9hPa3ciyBCkMkbK7BjwuFJOTwK8e/Z5+D/wAOdB8HeLNP0fxbD45sPEuLbU5orqN4zGqyAR5iYlWxK+W3ZyQRjFAHjOiftceLLL4HRXj2On6p4ts9USxuLi6gcQtbtGzxyuEKgyMY5FwpH3NxHOK80+PP7SPi74oaDYaDHGuiaX9lj/tS2tm+W9uQcs2T8wizgrGScHlixC4+ufiX+zr4U1j4Oy/D7wTHF4YjGopqUT7pJlkmVSh80sxdgVYgZJwQuBxiuZm/ZQ0i9+CGm+BbzXrePXbK9N2uuxaWjOAxbdb4LBzF85ON4ywDY/hoA8u1X4HeJr/9k7Q9S1b4jWqQ2UrawYb25lmsLOzeIKqRtEsjMwAzhFxmRlUcbn6D/gn78SPG2vatdeBNVukvPDuj6Q0tozwgS27ebGqRbxgldrSYDZIwACAAK+hfh58LNG8M/BW1+FuqS/29paW09vdPLH5X2gTSPI+ArEpzIcENkYBByM15X4w07Rf2SvhPqet+AtHu9cutZ1OKCWTU5wwtv3UpjZjHGpaNWGNpIJMh+cZoApfHX9njxX4w+P8Ao3jbw1ri2emyTW899JLdMsmnyQsu57dVXjcqKwwc+ZuJKggjO/aS+OPxU8H/AB+0rwl4R0h/7PRYDHZvaCU620mCdjbdyqCfLGwghlYkngD3H9njx7qPxL+E+leL9V0ddMuroyRusbAwzGNyhkiG5mVCVI2vhgVYcjazd3NaWs11BdTW0Mlxb7vJlaMF4tww209RkcHHWgD4M+Mnwc+KnjH9p4XereFfOsvEF9FMLi2Ym1gso1RNs0o+46RKobn5nzs3blzufF39kHxBo2pQ6r8JL64v0a4Zja3N0kE9opEYXZKSofBMpJO0hdowxyT9u0UAY3gSz1fT/A+g2HiC6+16xbabbw38/mF/NuFiUSPuPLZYE5PXNfM3/BSj/kSPCX/YSm/9FV6X40/aZ+FvhDxVqPhrWbvVU1DT5jDOIrFnUMADwc89a+bP2zPjV4G+KXhnQLDwnPfSz2N5JNMLi2MQClMDBJ55oA+uf2bVmX4B+BxPt3f2LbkYRl+UoCvDAHpjnoeoJBBr0GvlP4N/tRfC3w18KvDHh7WLnVo9Q03TYbW4VLLeoZFC8FQoI49M+pJyT7D8KPjj8Pfidr95oXhTULua+tLc3LJPaPEHiDqhdSRjgunBwfmHHBwAfNH7SPiv9pW1+Jvii30e28W2HhqFvItJNJsZGthbbVKyCdI+HbOWYNlWJXICgV2fhj4Bat8YNG8OeLvjLHqGi6/aqLe7iiZRNqlmsYaB5uT5EwZirjG4hcEKxyv1fRQBk313oXg3wk91dzQ6XomkWg3O5OyCGNcAdycAAAck8Dk1x9l4g+H/AMePh7r2j+HfEV1eaVcKbG+mtIpLeaLcAcDzox1HfaQeR611fjzwxp3jPwdqnhbVnuI7HU7doJnt3CyKD3UkEAjryCPY1xPwn+CXh/4b+Btd8LaDrevD+2w/n3/2hEuYC0ZjDQsqAIyg5BwSG59BQB8s+DvFVr+yX4+1jw7dfZPG8+q29q13Jp2omBbDZJMDG6EMGlwQ2G2lQRg4c1N8Gdc8Z/Bv4yWer/GvX9V07S9esJ5I2nvTeLcszoVkdEZmTlicsoI5GOteofs2fsx3XgTx3q3iTxzNomvIgaHS43thOd3mq4uj5g/dyDYMYyRvb5vX1P40/A/wX8WdR0m/8TyarFPpgZENlcLGJY2IJRwytxkdV2nk89MAHI/tC+I9P+JGgal8Kfh38RtMsvGLNDNLZeYUF/Bjc1uk+NoYhlchCzEIVICsxHi3w0/Zl0vSjYeMfiJ8UNC0xNJvonvrKKeJo4wr4iR7lpQqFioGNp44HPTvIf2LvCieN7jUR4l1BNA8om2sETE8cpDAEzZ+6p2sOMk8HAHPGWP7E2tJpOqf2p490+3mSUNZGG3doXRS3zTbipRtpHTcFywyetAH2npWo6fq2nQajpV9a39lcLvhuLaVZYpF9VZSQR7ivnH9sL4//wDCF2s/gLwVeXCeMZjF59xFErCxicbsAtnMrKVAAU4Vy2QwWvTv2afCWleCvhDpeh6P4ntfEturSTNf2sqvA7u25ljKkjaD7kk5PGcA8XfBD4eeKviPaePtZ0uafWbZoXGJ2EMrRHKF06NjABHQhQCDzkA80/Yg+FMnhrwxdeM/FvhRtK8V3t1NHbtcRmKWO0ITjyeBES4kGNqnaF7Hk/a0+B/j74p+NND1Pw3rdjFplrarbPbXd1KgtZfMd2uUVQVJKlEP8Xyr16r9KV8k/tY/D340+I/jT4b1jwpd3txoiz20enNauQmk3AJLTSpu9mYzYxjah5ChgDU/bk0r4jweG9J1Xw3rt7B4f0m0dr6VdZjsnE6smyWTJQzMyghUQ7t54GThvZ/gJ4ysfHHwp0DV7fWotXvVsIIdTmVSjfa1jUTblIUj5wx6AEcjjFM+L/wzsPin8N18J+Jb+4gnUx3CXlmduy5RCofYeGT5myh7HgggMM39nX4OaV8HPC93plrf/wBq6jfziW91A2/kmULkRoE3NhVDN3PLMe+AAd34t8O6L4s8OXvh3xFp8WoaXfJ5dxbyEgOAQRyCCCCAQQQQQCCCK5nSNA8A/BL4eazeaJpS6Rolkkuo3aJM8ryMqDOGlclmIUKq7sZwB1rqxrFk3iN9AUzG+S0W8ceS/liNnKL8+NpYlW+UEkAZIAIzdnhiuIJIJ4klikUpJG6hlZSMEEHqCO1AHlP7Pvx08P8Axi/tWHTNK1DTLzTdjSRXGHVo3yAwdeM5BG04PQjPOOwtfh14EtfGUvjK38J6TH4glYu9+LdfN3sMM4PQMR1YYJyeeTmX4feA/B/gDSDpXg/QLTSbZjmQxAtJKcsQZJGJeTG443McA4GBxXSUAFFFFABRRRQBjeJ/CnhjxR9k/wCEk8P6Zq/2KXzbb7ZbJL5TcZK7gcZwM+uB6VifGP4aeGvil4Rk8P8AiKBsqTJZ3cfEtrLggOp79eVPB/IjtKKAOG+CXwx0H4VeCYPDuijzpmxJf3zpte8nwAXIydq9lTJCjuTknuaKKAOG+Lfwn8E/FGzs4PF2mvO9kzNbXEMpiljDY3KGHVTgZBz0FdJ4R8PaP4T8NWHhzQLGKx0ywhEVvDGMADqST3YklmY8sSSckmtWigDzPxp8Cfhr4v8AH0HjfXNEefV42ieQrcMsdwYwAnmIDhsBVHuAAcivLf2d/jn8QfHfx517wj4k0JbDTIIbl0tBalZtOZJFCLM/f5SVJIGWIxjpX09RQAUUUUAFFFFABWNd+FPDF34ptfFN14f0ybXbSIxW+oPbIZ41PYORkd8egZgMbjnZooAiu7e3vLWa0u4Iri3nRo5YpUDJIjDBVgeCCCQQa858E/Aj4VeD9UTVdG8I2gv4bprq3uLhmmeBz0CbicBf4fTr15r0uvP/AIj/ABm+Gvw71yHRPGPiT+zL+e2W6ji+w3E26JmZQ2Y42H3kYYznj6UAU/2qP+TefGv/AGDW/wDQlrzL/gnF/wAkQ1n/ALGSf/0mtqpftB/tF/CTxL8IfEvhvQPEk2oahqFiYrdV064jUsWHBMiLjgZrzz4CeOrnwB+xN441rTJNmqt4gktLRlOGikmgtkEnsVG9h2JQCgD7por869f+H/jv4X/Dzwj8frXxrLcazqU1vcTp57lvLmTzYg7sQZQVULJGQRzj5lBNfenhPxNBrHw50nxldJ9jt77SIdTlTlvJV4RKRxycA9vSgDoKK/N3x38c7b4j/GfTdc8bJrMfgfS7lntdJ02TZP5fOCWDriRuNzBgQMhSOtfoZ4O8R6P4u8M2HiTQLr7Vpl/F5lvLsKFhkg5DAEEEEEH0oA1qKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Uf2z/B3iiz+Jvgv4xeH9EuNcg0F7ZLu0t9zOPIuGnQlVUkIdzKX5xxwO/Dad4g+I/wATvjk3xgPwvvooPCOjyfYtNVJczyKsphjLkK0knmTM+ETkIF28lj9z0UAfDXx4t/H3iLxZ8PfjNrvwivbyyh01IdV0GSGSXY8N1cErMpjLIjo6OC6EDdg5xzr/ALKPhTxFrfx28Q/Eu08BS+CfDsthMlpYESQQPLJtURRsVU7co7lkTahAAUfKB9nUkilkZVdkJBAZcZHuM8UAfnR+xT8MfCHxM8W69Z+MLGa9trGxWWGOO4eIbmYrklCCcdRz1HORxX1vpv7MnwS0+6tru28GMLm2dJI5W1S8J3qQQxHm46jPTHtXgf8AwTTgum8TeM7pA32WOyto5DuGN7O5Tjvwr89vxr7doAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDK8YaJb+JvCWseG7uWWG31WwnsZZIsb0SWNkJXORkBjjNcB+zt8FtL+Del6va2Os3erT6pcLJLNMgjVUTcI0CAkZAc5b+I9gAAPVKKACiiigAqK7t7e7t3trqCKeCQYeOVAysPQg8GpaKAIrS3t7S3S2tYIoIIxhI4kCqo9ABwKloooAKKKKAOR17wL8M9T1wXOu+DvCN7q1+SRJe6ZbyXFyUUZOXUs+FA9cDFfL3/BQPwb4Q8MeD/DE/hvwroWiyz6hKkr6fp8Vu0iiPIDFFGRnsa+z6+W/+CkFqT8KNAvlS3wmuJE7GMeacwTFQG6hflbI7kj0oA9A+B3wr+Gtx8GfBl3e+AfC99dXWh2dzPcXWkwSyySSQq7FnZCTyx616N4b8FeDfDN1Jd+G/CWg6LcSp5ckun6dFbu6ZB2kooJGQDj2rH+AaNH8DfAivM8pPh2wbc4GQDboQOAOADgd8AZJOTXbUAFFFFABRRRQB82ftr6v8aNOtdHj+HNtqaaK+WvbvR1d7sT5OEcIMpFtwQw4LZBxhd3tfwouPGF18OtFn8fWtva+JWt/9PigI2htxCk44DFdpYDgMSBxiuoooAK8k/a6OgP8CdctPEHihvDkd0FitbgNJia45ZIWWNWZ0baQwCnCgtj5a9LOnTHxGmrnV9Q8hbRrYacDGLbcXDGY/J5hkwoUZfaBnC5JJ5H47fC7Sfi34Kj8M6tf3dgkF7Hewz2wUlZFV05B4IKyOMcc4PbFAHnX7DXw9l8F/DW71eTxJa6wviCdZo0sbgy2kKxbkypwMyE5Dn/YUfw19B1ynwl8C6T8N/AOneENGeWa3swxaeUKJJpHYsztgDucD0AAycV1dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz3ifwL4K8UXQu/EnhHQdZulh8hZ77T4ppVjySFDspYAFmIAPBJNdDRQB4J+0r8MPhxpXwG8VX2l+BPDVheWdh5lvc2umRRTRsCACHVQ368968l/Zi8Bf8LK/Y38Z+E4pEivZ/EE0tjI/CrcR29q6ZPZWI2k4OAxr6J/ao/5N58a/wDYNb/0Ja80/wCCcju3wO1cMzEJ4jnCgnoPs1scD8ST+NAHjmoeBf2mfG/gzw/8ItZ8MLZ6Lo9wBHe3LIihUBRPNlVmDxxqxCiNSSMcNhcfQ1poPxfs/HcPw8tLGxT4TQaEulRakzxm6VVsPLDECQSb/OAHCgbfzr3SigD8+x8Lf2hvDvgDWfg9a+ArG/0jWL
<p>During the 2020 Mars opposition, we observe from Earth the occurrence of a non-typical large-scale high-altitude clouds system, extending over thousands of km from the equator to 50&#176;S. Over 3 hours, they emerge from the night side at an altitude of 90 (-15/+30) km and progressively dissipate in the dayside. They occur at a solar longitude of 316&#176;, west of the magnetic anomaly and concomitantly to a regional dust storm. Despite their high altitude, they are composed of relatively large particles, suggesting a probable CO<sub>2</sub> ice composition, although H<sub>2</sub>O cannot be totally excluded. Such ice clouds were not reported previously. We discuss the formation of this new type of clouds and suggest a possible nucleation from cosmic particle precipitation.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.