The intestine secretes a range of hormones with important local and distant actions, including the control of insulin secretion and appetite. A number of enteroendocrine cell types have been described, each characterized by a distinct hormonal signature, such as K-cells producing glucose-dependent insulinotropic polypeptide (GIP), L-cells producing glucagon-like peptide-1 (GLP-1), and I-cells producing cholecystokinin (CCK). To evaluate similarities between L-, K-, and other enteroendocrine cells, primary murine L- and K-cells, and pancreatic α- and β-cells, were purified and analyzed by flow cytometry and microarray-based transcriptomics. By microarray expression profiling, L cells from the upper small intestinal (SI) more closely resembled upper SI K-cells than colonic L-cells. Upper SI L-cell populations expressed message for hormones classically localized to different enteroendocrine cell types, including GIP, CCK, secretin, and neurotensin. By immunostaining and fluorescence-activated cell sorting analysis, most colonic L-cells contained GLP-1 and PeptideYY In the upper SI, most L-cells contained CCK, approximately 10% were GIP positive, and about 20% were PeptideYY positive. Upper SI K-cells exhibited approximately 10% overlap with GLP-1 and 6% overlap with somatostatin. Enteroendocrine-specific transcription factors were identified from the microarrays, of which very few differed between the enteroendocrine cell populations. Etv1, Prox1, and Pax4 were significantly enriched in L-cells vs. K cells by quantitative RT-PCR. In summary, our data indicate a strong overlap between upper SI L-, K-, and I-cells and suggest they may rather comprise a single cell type, within which individual cells exhibit a hormonal spectrum that may reflect factors such as location along the intestine and exposure to dietary nutrients.
Context: Published studies exploring the metabolic effects of Modified-Release Hydrocortisone (MR-HC) replacement in patients with adrenal insufficiency (AI). Objective: To compare metabolic effects of MR-HC with Standard Glucocorticoid (SG) replacement in adults with AI. Randomized control trials (RCTs) were meta-analysed; non-RCT studies described narratively with critical appraisal. Data sources: PubMed/Medline, EMBASE, CINAHL and CENTRAL were searched to identify relevant articles, published before Aug 2019. Study selection: All study types that reported metabolic profile (including anthropometric, glucose and lipid-related parameters), on patients switched from SG to MR-HC replacement. Following independent screening from two reviewers, 390 studies were identified, of which 9 studies were included for review (RCT, n = 2; non-RCT, n = 7). Data extraction: Two independent reviewers assessed each paper for bias and data extraction. Results: Meta-analysis from RCTs (n = 2), 104 patients were switched from SG to MR-HC replacement. Combining treatment effects, at 3-months post-therapy switch there was significant reduction in body weight (−0.82 kg; 95% CI: −1.24 kg to −0.40 kg; P < .001) and HbA1c (−0.13%; 95% CI: −0.214% to −0.045%; P = .003). In the subgroup with Diabetes Mellitus (DM), reduction in HbA1C was more pronounced (−0.52%; 95% CI: −0.82% to −0.23%; P < .001). Non-RCT studies showed improved anthropometric measures and glucose metabolism up to 48-months following switch from SG to MR-HC replacement. Conclusions: In adults with AI, replacement with MR-HC associates with significant improvements in anthropometric measurements and HbA1c compared with SG replacement, particularly those with DM.
PurposeTo compare metabolic effects of modified release hydrocortisone (MR-HC) with standard hydrocortisone (HC) therapies in adults with Adrenal Insufficiency (AI).MethodsAdult patients (n = 12) with AI, established on HC therapy, were recruited from Endocrinology clinics at University Hospitals Coventry and Warwickshire (UHCW), UK. Baseline (HC) metabolic assessments included fasting serum HbA1C, lipid and thyroid profiles, accurate measures of body composition (BodPod), and 24-h continuous measures of energy expenditure including Sleeping Metabolic Rate (SMR) using indirect calorimetry within the Human Metabolism Research Unit, UHCW. All participants then switched HC to MR-HC with repeat (MR-HC) metabolic assessments at 3 months. Paired-sample t-tests were used for data comparisons between HC and MR-HC assessments: P-value <0.05 was considered significant.ResultsFollowing exclusion of 2 participants, analyses were based on 10 participants. Compared with baseline HC data, following 3 months of MR-HC therapy mean fat mass reduced significantly by −3.2 kg (95% CI: −6.0 to −0.4). Mean (SD) baseline HC fat mass vs repeat MR-HC fat mass: 31.9 kg (15.2) vs 28.7 kg (12.8) respectively, P = 0.03. Mean SMR increased significantly by +77 kcal/24 h (95% CI: 10–146). Mean (SD) baseline HC SMR vs repeat MR-HC SMR: 1,517 kcal/24 h (301) vs 1,594 kcal/24 h (344) respectively, P = 0.03. Mean body fat percentage reduced significantly by −3.4% (95% CI: −6.5 to −0.2). Other measures of body composition, energy expenditure, and biochemical analytes were equivalent between HC and MR-HC assessments.ConclusionsIn adults with AI, switching from standard HC to MR-HC associates with early metabolic benefits of reduced fat mass and increased SMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.