Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.
A fragment of the large‐subunit (LSU) ribosomal RNA gene (rDNA) from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech was cloned and sequenced to assess inter‐ and intraspecific relationships. Cultures examined were from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo vessels and included both toxic and nontoxic isolates. Parsimony analyses revealed eight major classes of sequences, or “ribotypes,” indicative of both species‐ and strain‐specific genetic markers. Five ribotypes subdivided members of the A. tamarense/catenella/ fundyense species cluster (the “tamarensis complex”) but did not correlate with morphospecies designations. The three remaining ribotypes were associated with cultures that clearly differ morphologically from the tamarensis complex. These distinct sequences were typified by 1) A. affine, 2) A. minutum and A. lusitanicum, and 3) A. andersoni. LSU rDNA from A. minutum and A. lusitanicum was indistinguishable. An isolate's ability to produce toxin, or lack thereof, was consistent within phylogenetic terminal taxa. Results of this study are in complete agreement with conclusions from previous work using restriction fragment‐length polymorphism analysis of small subunit rRNA genes, but the LSU rDNA sequences provided finer‐scale species and population resolution. The five divergent lineages of the tamarensis complex appeared indicative of regional populations; representatives collected from the same geographic region were the most similar, regardless ofmorphotype, whereas those from geographically separated populations were more divergent even when the same morphospecies were compared. Contrary to this general pattern, A. tamarense and A. catenella from Japan were exceptionally heterogeneous, displaying sequences associated with Australian, North American, and western European isolates. This diversity may stem from introductions of A., tamarense to Japan from genetically divergent sources in North America and western Europe. Alexandrium catenella from Japan and Australia appeared identical, suggesting that these two regional populations share a recent, common ancestry. One explanation for this genetic continuity was suggested by A. catenella cysts transported from Japan to Australia via ships' ballast water: the cysts contained LSU rDNA sequences that were indistinguishable from those of known populations of A. catenella in both Japan and Australia. Ships ballasted in South Korea and Japan have also fostered a dispersal of viable A. tamarense cysts to Australia, but their LSU rDNA sequences indicated they are genetically distinct from A. tamarense/catenella previously found in Australia and genetically distinct from each other, as well. Human‐assisted dispersal is a plausible mechanism for inoculating a region with diverse representatives of the tamarensis comple...
Up and down go the cyanobacteria Plankton move together in strikingly coordinated daily patterns, sinking at night to avoid being eaten and rising to the surface in daylight to photosynthesize. Otteson et al. found similar activity patterns in even the smallest of planktonic organisms, such as photosynthetic bacteria (see the Perspective by Armbrust). Because it's hard to take regular samples in the open ocean, the authors built a robotic sampler and set it adrift for several days in the mid-Pacific. The captured bacteria showed immediate responses to changes in light, temperature, and salinity in ways that could affect the ocean's carbon and nitrogen cycles. Science , this issue p. 207 ; see also p. 134
Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.autonomous sampling | environmental microbiology | metatranscriptomics | microbial oceanography | community ecology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.