N 6 -Methyladenosine is a ubiquitous modification identified in the mRNA of numerous eukaryotes, where it is present within both coding and noncoding regions. However, this base modification does not alter the coding capacity, and its biological significance remains unclear. We show that Arabidopsis thaliana mRNA contains N 6 -methyladenosine at levels similar to those previously reported for animal cells. We further show that inactivation of the Arabidopsis ortholog of the yeast and human mRNA adenosine methylase (MTA) results in failure of the developing embryo to progress past the globular stage. We also demonstrate that the arrested seeds are deficient in mRNAs containing N 6 -methyladenosine. Expression of MTA is strongly associated with dividing tissues, particularly reproductive organs, shoot meristems, and emerging lateral roots. Finally, we show that MTA interacts in vitro and in vivo with At FIP37, a homolog of the Drosophila protein FEMALE LETHAL2D and of human WILMS' TUMOUR1-ASSOCIATING PROTEIN. The results reported here provide direct evidence for an essential function for N 6 -methyladenosine in a multicellular eukaryote, and the interaction with At FIP37 suggests possible RNA processing events that might be regulated or altered by this base modification.
A fragment of the large‐subunit (LSU) ribosomal RNA gene (rDNA) from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech was cloned and sequenced to assess inter‐ and intraspecific relationships. Cultures examined were from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo vessels and included both toxic and nontoxic isolates. Parsimony analyses revealed eight major classes of sequences, or “ribotypes,” indicative of both species‐ and strain‐specific genetic markers. Five ribotypes subdivided members of the A. tamarense/catenella/ fundyense species cluster (the “tamarensis complex”) but did not correlate with morphospecies designations. The three remaining ribotypes were associated with cultures that clearly differ morphologically from the tamarensis complex. These distinct sequences were typified by 1) A. affine, 2) A. minutum and A. lusitanicum, and 3) A. andersoni. LSU rDNA from A. minutum and A. lusitanicum was indistinguishable. An isolate's ability to produce toxin, or lack thereof, was consistent within phylogenetic terminal taxa. Results of this study are in complete agreement with conclusions from previous work using restriction fragment‐length polymorphism analysis of small subunit rRNA genes, but the LSU rDNA sequences provided finer‐scale species and population resolution. The five divergent lineages of the tamarensis complex appeared indicative of regional populations; representatives collected from the same geographic region were the most similar, regardless ofmorphotype, whereas those from geographically separated populations were more divergent even when the same morphospecies were compared. Contrary to this general pattern, A. tamarense and A. catenella from Japan were exceptionally heterogeneous, displaying sequences associated with Australian, North American, and western European isolates. This diversity may stem from introductions of A., tamarense to Japan from genetically divergent sources in North America and western Europe. Alexandrium catenella from Japan and Australia appeared identical, suggesting that these two regional populations share a recent, common ancestry. One explanation for this genetic continuity was suggested by A. catenella cysts transported from Japan to Australia via ships' ballast water: the cysts contained LSU rDNA sequences that were indistinguishable from those of known populations of A. catenella in both Japan and Australia. Ships ballasted in South Korea and Japan have also fostered a dispersal of viable A. tamarense cysts to Australia, but their LSU rDNA sequences indicated they are genetically distinct from A. tamarense/catenella previously found in Australia and genetically distinct from each other, as well. Human‐assisted dispersal is a plausible mechanism for inoculating a region with diverse representatives of the tamarensis comple...
Recently, an alternative route to the proteasomal protein-degradation pathway was discovered that specifically targets transmembrane proteins marked with a single ubiquitin to the endosomal multivesicular body (MVB) and,subsequently, to the vacuole (yeast) or lysosome (animals), where they are degraded by proteases. Vps23p/TSG101 is a key component of the ESCRT I-III machinery in yeast and animals that recognizes mono-ubiquitylated proteins and sorts them into the MVB. Here, we report that the Arabidopsis ELCH(ELC) gene encodes a Vps23p/TSG101 homolog, and that homologs of all known ESCRT I-III components are present in the Arabidopsis genome. As with its animal and yeast counterparts, ELC binds ubiquitin and localizes to endosomes. Gel-filtration experiments indicate that ELC is a component of a high-molecular-weight complex. Yeast two-hybrid and immunoprecipitation assays showed that ELC interacts with Arabidopsis homologs of the ESCRT I complex. The elc mutant shows multiple nuclei in various cell types,indicating a role in cytokinesis. Double-mutant analysis with kaktusshows that increased ploidy levels do not influence the cytokinesis effect of elc mutants, suggesting that ELC is only important during the first endoreduplication cycle. Double mutants with tubulin folding cofactor a mutants show a synergistic phenotype, suggesting that ELC regulates cytokinesis through the microtubule cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.